
Working on embedded software, one quickly develops a quasi-religious respect
for the axioms of embedded C programming:

1. The entry point of thy program shall be named “main”.
2. Thou shalt initialize thy static variables, else The Machine shall set

them to zero.
3. Thou shalt implement The Interrupts. HardFault_Handler chief among

them, but also SysTick_Handler.

Ask an engineer where those rules come from, and they’ll wave towards cryptic
startup files implemented in assembly. Often times those files are copy-pasted
from project to project. Seldom are they ever read, let alone modified.

Throughout the Zero to main() series of posts, we demystify what happens
between when power is applied and your main function is called. In the process,
we’ll learn how to bootstrap a C environment, implement a bootloader, relocate
code, and more!

Setting the stage
While most of the concepts and code presented in this series should work for all
Cortex-M series MCUs, our examples target the SAMD21G18 processor by
Atmel. This is a Cortex-M0+ chip found on several affordable development
boards.

Specifically, we are using:

In each case, we’ll implement a simple blinking LED application. It is not
particularly interesting in itself, but for the sake of completeness you can find the
code reproduced below.

#include <samd21g18a.h>

#include <port.h>

#include <stdbool.h>

#include <stdint.h>

#define LED_0_PIN PIN_PA17

static void set_output(const uint8_t pin) {

 struct port_config config_port_pin;

From Zero to main(): Bare metal C

https://interrupt.memfault.com/blog/tag/zero-to-main

 port_get_config_defaults(&config_port_pin);

 config_port_pin.direction = PORT_PIN_DIR_OUTPUT;

 port_pin_set_config(pin, &config_port_pin);

 port_pin_set_output_level(pin, false);

}

int main() {

 set_output(LED_0_PIN);

 while (true) {

 port_pin_toggle_output_level(LED_0_PIN);

 for (volatile int i = 0; i < 100000; ++i) {}

 }

}

Power on!
So how did we get to main? All we can tell from observation is that we applied
power to the board and our code started executing. There must be behavior
intrinsic to the chip that defines how code is executed.

And indeed, there is! Digging into the ARMv6-M Technical Reference Manual,
which is the underlying architecture manual for the Cortex-M0+, we can find
some pseudo-code that describes reset behavior:

// B1.5.5 TakeReset()

// ============

TakeReset()

 VTOR = Zeros(32);

 for i = 0 to 12

 R[i] = bits(32) UNKNOWN;

 bits(32) vectortable = VTOR;

 CurrentMode = Mode_Thread;

 LR = bits(32) UNKNOWN; // Value must be initialised by software

 APSR = bits(32) UNKNOWN; // Flags UNPREDICTABLE from reset

 IPSR<5:0> = Zeros(6); // Exception number cleared at reset

 PRIMASK.PM = '0'; // Priority mask cleared at reset

 CONTROL.SPSEL = '0'; // Current stack is Main

 CONTROL.nPRIV = '0'; // Thread is privileged

 ResetSCSRegs(); // Catch-all function for System Control Space reset

 for i = 0 to 511 // All exceptions Inactive

 ExceptionActive[i] = '0';

 ClearEventRegister(); // See WFE instruction for more information

 SP_main = MemA[vectortable,4] AND 0xFFFFFFFC<31:0>;

 SP_process = ((bits(30) UNKNOWN):'00');

https://static.docs.arm.com/ddi0419/d/DDI0419D_armv6m_arm.pdf

 start = MemA[vectortable+4,4]; // Load address of reset routine

 BLXWritePC(start); // Start execution of reset routine

In short, the chip does the following:

Reset the vector table address to 0x00000000
Disable all interrupts
Load the SP from address 0x00000000
Load the PC from address 0x00000004

“Mystery solved!”, you’ll say. Our main function must be at address 0x00000004!

Let us check.

First, we dump our bin file to see what address 0x0000000 and 0x00000004
contain:

francois-mba:zero-to-main francois$ xxd build/minimal/minimal.bin | head

00000000: 0020 0020 c100 0000 b500 0000 bb00 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

00000030: 0000 0000 0000 0000 0000 0000 0000 0000

00000040: 0000 0000 0000 0000 0000 0000 0000 0000

00000050: 0000 0000 0000 0000 0000 0000 0000 0000

00000060: 0000 0000 0000 0000 0000 0000 0000 0000

00000070: 0000 0000 0000 0000 0000 0000 0000 0000

00000080: 0000 0000 0000 0000 0000 0000 0000 0000

00000090: 0000 0000 0000 0000 0000 0000 0000 0000

If I’m reading this correctly, our inital SP is 0x20002000, and our start address
pointer is 0x000000c1.

Let’s dump our symbols to see which one is at 0x000000c1.

francois-mba:minimal francois$ arm-none-eabi-objdump -t build/minimal.elf | sort

...

000000b4 g F .text 00000006 NMI_Handler

000000ba g F .text 00000006 HardFault_Handler

000000c0 g F .text 00000088 Reset_Handler

00000148 l F .text 0000005c system_pinmux_get_group_from_gpio_pin

000001a4 l F .text 00000020 port_get_group_from_gpio_pin

000001c4 l F .text 00000022 port_get_config_defaults

000001e6 l F .text 0000004e port_pin_set_output_level

00000234 l F .text 00000038 port_pin_toggle_output_level

0000026c l F .text 00000040 set_output

000002ac g F .text 0000002c main

...

That’s odd! Our main function is found at 0x000002ac. No symbol at
0x000000c1, but a Reset_Handler symbol at 0x000000c0.

It turns out that the lowest bit of the PC is used to indicate thumb2 instructions,
which is one of the two instruction sets supported by ARM processors, so
Reset_Handler is what we’re looking for (for more details check out section
A4.1.1 in the ARMv6-M manual).

Writing a Reset_Handler
Unfortunately, the Reset_Handler is often an inscrutable mess of Assembly code.
See the nRF52 SDK startup file for example.

Instead of going through this file line-by-line, let’s see if we can write a minimal
Reset_Handler from first principles.

Here again, ARM’s Technical Reference Manuals are useful. Section 5.9.2 of the
Cortex-M3 TRM contains the following table:

Reset boot-up behavior

Action Description

Initialize
variables

Any global/static variables must be setup. This includes initializing the
BSS variable to 0, and copying initial values from ROM to RAM for
non-constant variables.

[Setup
stacks]

If more than one stack is be used, the other banked SPs must be
initialized. The current SP can also be changed to Process from Main.

[Initialize
any
runtime]

Optionally make calls to C/C++ runtime init code to enable use of
heap, floating point, or other features. This is normally done by
__main from the C/C++ library.

So, our ResetHandler is responsible for initializing static and global variables, and
starting our program. This mirrors what the C standards tells us:

All objects with static storage duration shall be initialized (set to their
initial values) before program startup. The manner and timing of such
initialization are otherwise unspecified.

(Section 5.1.2, Execution environment)

In practice this means that given the following snippet:

static uint32_t foo;

static uint32_t bar = 2;

Our Reset_Handler needs to make sure that the memory at &foo is 0x00000000,
and the memory at &bar is 0x00000002.

https://github.com/NordicSemiconductor/nrfx/blob/293f553ed9551c1fdfd05eac48e75bbdeb4e7290/mdk/gcc_startup_nrf52.S#L217
https://developer.arm.com/docs/ddi0337/e/exceptions/resets/intended-boot-up-sequence

We cannot just go and initialize each variable one by one. Instead, we rely on the
compiler (technically, the linker) to put all those variables in the same place so we
can initialize them in one fell swoop.

For static variables that must be zeroed, the linker gives us _sbss and _ebss as
start and end addresses. We can therefore do:

/* Clear the zero segment */

for (uint32_t *bss_ptr = &_sbss; bss_ptr < &_ebss;) {

 *bss_ptr++ = 0;

}

For static variables with an init value, the linker gives us:

_etext as the address the init values are stored at
_sdata as the address the static variables live at
_edata as the end of the static variables memory

We then can do:

uint32_t *init_values_ptr = &_etext;

uint32_t *data_ptr = &_sdata;

if (init_values_ptr != data_ptr) {

 for (; data_ptr < &_edata;) {

 *data_ptr++ = *init_values_ptr++;

 }

}

Putting it together, we can write our Reset_Handler

void Reset_Handler(void)

{

 /* Copy init values from text to data */

 uint32_t *init_values_ptr = &_etext;

 uint32_t *data_ptr = &_sdata;

 if (init_values_ptr != data_ptr) {

 for (; data_ptr < &_edata;) {

 *data_ptr++ = *init_values_ptr++;

 }

 }

 /* Clear the zero segment */

 for (uint32_t *bss_ptr = &_sbss; bss_ptr < &_ebss;) {

 *bss_ptr++ = 0;

 }

}

We still need to start our program! That’s achieved with a simple call to main().

void Reset_Handler(void)

{

 /* Copy init values from text to data */

 uint32_t *init_values_ptr = &_etext;

 uint32_t *data_ptr = &_sdata;

 if (init_values_ptr != data_ptr) {

 for (; data_ptr < &_edata;) {

 *data_ptr++ = *init_values_ptr++;

 }

 }

 /* Clear the zero segment */

 for (uint32_t *bss_ptr = &_sbss; bss_ptr < &_ebss;) {

 *bss_ptr++ = 0;

 }

 /* Overwriting the default value of the NVMCTRL.CTRLB.MANW bit (errata reference 131

 NVMCTRL->CTRLB.bit.MANW = 1;

 /* Branch to main function */

 main();

 /* Infinite loop */

 while (1);

}

You will note that we added two things:

1. An infinite loop after main(), so we do not run off into the weeds if
the main function returns

2. Workaround for chip bugs which are best taken care of before our
program starts. Sometimes these are wrapped in a SystemInit
function called by the Reset_Handler before main. This is the
approach taken by Nordic.

Closing
All the code used in this blog post is available on Github.

See anything you'd like to change? Submit a pull request or open an issue at
GitHub

More complex programs often require a more complicated Reset_Handler. For
example:

https://github.com/NordicSemiconductor/nrfx/blob/6f54f689e9555ea18f9aca87caf44a3419e5dd7a/mdk/system_nrf52811.c#L60
https://github.com/memfault/zero-to-main/tree/master/minimal
https://github.com/memfault/interrupt

1. Relocatable code must be copied over
2. If our program relies on libc, we must initialize it

EDIT: Post written! - From Zero to main(): Bootstrapping libc with
Newlib

3. More complex memory layouts can add a few copy / zero loops

We’ll cover all of them in future posts. But before that, we’ll talk about how the
magical memory region variables come about, how our Reset_Handler’s address
ends up at 0x00000004, and how to write a linker script in our next post!

EDIT: Post written! - From Zero to main(): Demystifying Firmware Linker
Scripts

https://interrupt.memfault.com/blog/boostrapping-libc-with-newlib
https://interrupt.memfault.com/blog/how-to-write-linker-scripts-for-firmware

