
LAB #2—Intro to FreeRTOS
November 16, 2022

1 EXERCISE 1
In this exercise, you will design a program that changes the flashing rate of LEDs de-
pending on the push of a button. The program should work as follows:

• The program start blinking every second

• If switch SW1 is pressed, the blinking rate is multiplied by 2

• If switch SW2 is pressed, the blinking rate is divided by 2

• The minimum flashing rate is 0.1Hz and the maximum flashing rate is 2Hz.

2 EXERCISE 2
In this exercise, you will use FreeRTOS and control LEDs with 3 tasks. Your program will
implement what is commonly known as a running LED light1 and will work as outline in
the flow chart outlined in Figure 1 Your program should contains three tasks as follows:

• You will need to use 8 running LEDs.

• vTask1—check if value from queue is legal. If not, a reset signal is needed to be
sent. When implementing your solution, you may consider to use xSemaphore-
Give()2 to release a signal and xQueuePeek()3 to read item but not pop from a
queue.

• vTask2—shift the value of LEDs (led_val) and queue it, and to reset both led_val
and queue when illegal led_val is detected. During your implementation, you may
consider to use the following three functions xQueueSend()4, xSemaphoreTake()5,
and xQueueReset()6.

• vTask3—It used to retrieve new value from the queue and assign the value to
led_val.

1 https://www.youtube.com/watch?v=bqml8xa4b4g
2 https://www.freertos.org/a00123.html
3 https://www.freertos.org/xQueuePeek.html
4 https://www.freertos.org/a00117.html
5 https://www.freertos.org/a00122.html
6 https://www.freertos.org/a00018.html#xQueueReset

1

https://www.youtube.com/watch?v=bqml8xa4b4g
https://www.freertos.org/a00123.html
https://www.freertos.org/xQueuePeek.html
https://www.freertos.org/a00117.html
https://www.freertos.org/a00122.html
https://www.freertos.org/a00018.html#xQueueReset


Lab#1—Introduction

FIGURE 1. Flowchart of a program to control LEDs with 3 tasks

3 EXERCISE 3

3.1 Introduction
Software timers are important parts of any real-time multitasking operating system. The
timers are used in tasks to schedule the execution of a function at a time in the future, or
periodically with a fixed frequency. Software timers under FreeRTOS do not require any
hardware and are not related to hardware timers as they are implemented in software.
When a timer expires, the program can be configured to call a function names as the
timer’s callback function.

Software timers are optional in FreeRTOS and the application programs must be built
with the source file timers.h included as part of the program. Parameter configUSE_TIMERS
must be set to 1 in file FreeRTOSConfig.h before the software timers can be used.

Two types of software timers are supported by FreeRTOS:

• One-shot timers—These timers are started manually and do not re-start when they
complete. The callback function is executed only one when the timer expires.

• Auto-reload timers—These timers re-start each time they expire, thus resulting in

ECS6264—IoT Operating Systems 2



Lab#1—Introduction

repetitive execution of the callback function attached to the timer.

A software timer can be in one of two states: Dormant, and Running. A Dormat timer
exists but it is not active. A Running timer is active and it will call its callback function
when its period expires.

All software timer callback functions execute in the context of the same RTOS daemon
(or “timer service”) task. The daemon task is a standard FreeRTOS task that is created
automatically when the scheduler is started. The priority and stack size are set at compile
time by the two parameters in file FreeRTOSConfig.h: configTIMER_TASK_PRIOR-
ITY and configTIMER_TASK_STACK_DEPTH. Callback functions must not call to
functions that may cause the enter the Blocked state.

A timer must be created before it can be used. Creating a timer does not start it.
Timers must be started, stopped, or reset manually by the user programs. Software
timer API functions send commands from the calling task to the daemon task on a queue
called the “timer command queue”. The timer command queue is a standard FreeRTOS
queue that is created automatically when the scheduler is started. The length of the
timer command queue is set by the configTIMER_QUEUE_LENGTH compile time
configuration constant in FreeRTOSConfig.h.

The daemon task is scheduled like any other FreeRTOS task and it will process commands,
or execute timer callback functions, when it is the highest priority task that is able to
run. Parameter configTIMER_TASK_PRIORITY controls the timer task priority and
is recommended to be set to higher than other tasks to allow the timers to work smoothly.

3.2 Description
In this exercise, you will create a reaction timer. The exercise uses an LED and a push-
button switch. The user is expected to press the push-button switch as soon as the LED
is turned ON. The time between the LED being turned ON and the user pressing the
button is measured and printed to the serial port in milliseconds. The LED is turned ON
again after a random delay, ready for the next measurement.

3.3 Implementation details
• The program will consist of only one task
• You can generate the random numbers using the rand() as shown in Listing 1

#include <stdint.h>
#include <stdlib.h>
#include <time.h>
uint8_t get_random_number(uint8_t min, uint8_t max){

srand(time(0));
double scaled = (double)random()/RANDOM_MAX;

ECS6264—IoT Operating Systems 3



Lab#1—Introduction

return (max - min +1)*scaled + min;
}

Listing 1: Function to generate a random number between two integers

• The random number generate from the pseudo-code in Listing 1 is used to create
random delay in the program so that the user does not know when the LED will
lit again.

• As soon as the LED is turned on, the current tick count is stored in variable. The
program then waits until the button is pressed by the user, and then calculates
the elapsed time by getting the new tick count and subtracting the old tick count
from it. This value is the reaction time of the user in milliseconds, which is then
displayed on the serial port.

Algorithm 1: Pseudo-code to control the reaction timer device
Input:

• RESET_SWITCH —when the reset switch is pressed,
the device turn the LED and clears the serial port

• REACTION_TIMER_SWITCH —when pressed, the user’s reaction time is displayed on
the serial port

Initialization
• All pins connected to the switches are initialized as inputs
• All pins connected to the LED are initialized as outputs
• Turn off the LED

end
Output: A message on the serial port that shows how many milliseconds a user took to

press an the REACTION_TIMER_SWITCH
Loop

if RESET_SWITCH==PRESSED then
Turn OFF the LED
Clear the serial port display

if REACTION_TIMER_SWITCH==PRESSED then
Wait 5 seconds
Wait random time between 1 and 10 seconds
Turn the LED ON
Save the current time (in terms of tick counts)
Wait until push-button switch is pressed
Save the new tick count
Calculate the elapsed time
Turn LED OFF
Display elapsed time in milliseconds on LCD

EndLoop

ECS6264—IoT Operating Systems 4



Lab#1—Introduction

4 EXERCISE 4

4.1 Introduction
In this exercise, you will use FreeRTOS software timer to measure the number a given
event occurred. Event counting is used for example in measuring the speed of car. In
this particular case, a magnet and a hall sensors are combined to measure how often a
wheel rotates. A Hall sensor detects the presence of a magnet based on its polarity. If
a magnet is fixed on a wheel and and place the hall sensor near it in such a way that
every time the wheel rotates the hall sensor detects it it is possible to count the number
of wheel rotations; thus, the overall speed of the vehicle.

4.1.1 Implementation details

• Your program shall work as shown in Algorithm 2

• Full wheel rotation will be simulated using a square wave generated by a function
generator, i.e., when the square wave completes its period, you can assume that the
wheel has completed its circle.

• The program will consist of two tasks:

– The ideal task 7, which is used to print the vehicle’s velocity on the serial port

– The vFrequencyCounter, which compute the number of time the wheel com-
pleted a full circle

– Assume the vehicle has a wheel of 35 cm. For reference, please read this
document to learn how to compute the final speed of the vehicle.

Algorithm 2: Pseudo-code to compute the speed of a vehicle
Input: SQUARE_WAVE_SIGNAL —similate the a wheel’s full circle that would be

detected by a hall sensor. The square wave will be generated by an external
signal generator

Output: The speed of the vehicle (in Km/h)
Loop

Wait until a rising signal edge of the square wave is detected
Start timer with period of 1 second
Count the number of rising signal edges
When timer is expired, compute the speed of the of vehicle
Display the speed of the vehicle on the serial port

EndLoop

7 https://www.freertos.org/RTOS-idle-task.html

ECS6264—IoT Operating Systems 5

https://www.texasgateway.org/resource/61-angle-rotation-and-angular-velocity
https://www.texasgateway.org/resource/61-angle-rotation-and-angular-velocity
 https://www.freertos.org/RTOS-idle-task.html

