
RTOS services —Part II

Kizito NKURIKIYEYEZU,
Ph.D.

Readings

Read Chap 7 of
Simon, D. E. (1999).
An Embedded
Software Primer
Read Chap 5 and 6
of Richard B. (2019).
Mastering the
FreeRTOS Real Time
Kernel
Topics:

inter-task
communication
timer services
Queue, mailbox,
pipes
memory
management
interaction
between ISR and
RTOS

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 1 / 40

Message queues, Mailboxes and
Pipes

Inter-task communication is necessary to coordinate their
activities or share data. It can be done via a global variable
but this is error-prone and difficult
Synchronization and messaging provides the necessary
communication between tasks in one system to tasks in
another system.
Besides shared variables and semaphores, tasks can
communicate with each other using queues, mailboxes and
pipes.The RTOS guarantees that the functions provided for
using these mechanisms are reentrant

Mailbox—data buffer that can store a fixed number of
messages of a fixed size
Queues —allow passing information between tasks without
incurring overwrites from other tasks or entering into a race
condition
Pipe—essentially identical to a queue, but processes
byte-oriented data.
Event flag—used to synchronize internal activities while
message queues and mailboxes are used to send text
messages between systems

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 2 / 40

Message Queues

Message Queues
Simple Example

Let’s say there are two tasks, Task1 and Task2, each with high
priority things to do
When an error accurs, the two tasks must report it
However, error reporting is time consuming and might prevent
these tasks to do their job properly.
Thus, another task, ErrorsTask, handles error reporting

Question: How to implement this in an RTOS?—Use an
RTOS queue1

1https://en.wikipedia.org/wiki/Queue_(abstract_data_type)Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 3 / 40

1 void Task1(void){
2 while(true){
3 if (system_error()){
4 string error = get_error_message();
5 vLog_error_log_task(error);
6 }
7 }
8 }
9 void Task2(void){

10 while(true){
11 if (system_error()){
12 string error = get_error_message();
13 vLog_error_log_task(error);
14 }
15 }
16 }

LISTING 1: Task1 and Task2 implementation snippets

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 4 / 40

1 void vLog_error_log_task(string error){
2 queue_add(error);
3 }
4 void vLog_error_processing_task(string

error_message){
5 while(true){
6 string error = queue_read_error();
7 if (error != NULL){
8 // save error to an sd
9 // print error message

10 }
11 }
12 }

LISTING 2: Error logging tasks snippet

Note:
The queue_add() add an error to the RTOS queue
The queue_read_error() read an error from the head of the
queue
Both functions must be reentrant! —Why?

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 5 / 40

Queue in FreeRTOS
A queue can hold a finite number of fixed size data items.
Queues are normally used as FIFO buffers, where data is
written to the end (tail) of the queue and removed from the
front (head) of the queue.
It is also possible to write to the front of a queue, and to
overwrite data that is already at the front of a queue

FIG 1. A queue is created to allow Task A and Task B to communicate. The
queue can hold a maximum of 5 integers. When the queue is created it does
not contain any values so is empty.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 6 / 40

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

FIG 2. Task A writes (sends) the value of a local variable to the back of the
queue. As the queue was previously empty the value written is now the only
item in the queue, and is therefore both the value at the back of the queue and
the value at the front of the queue.

FIG 3. Task A changes the value of its local variable before writing it to the
queue again. The queue now contains copies of both values written to the
queue. The first value written remains at the front of the queue, the new value
is inserted at the end of the queue. Three empty spaces are remaining.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 7 / 40

FIG 4. Task B reads from the queue into a different variable. The value
received by Task B is the value from the head of the queue, which is the first
value Task A wrote to the queue (i.e., 10 here)

FIG 5. Task B has removed one item, leaving only the second value written by
Task A remaining in the queue. This is the value Task B would receive next if it
read from the queue again. The queue now has four empty spaces remaining.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 8 / 40

Queue in FreeRTOS
All xQUEUE have the following fields2:

uxLength and uxItemSize indicate what is the maximum
number of messages that it can hold, and the size of each
message in bytes, respectively.
pcHead and pcTail delimit the message storage zone
associated with the queue. In particular, pcHead points to the
base, that is, the lowest address of the memory area, and
pcTail points to one byte more than the highest address of
the area.
pcReadFrom and pcWriteTo delineate the full portion of the
message storage zone, and separate it from the free
message storage space.
uxMessagesWaiting counts how many messages are
currently in the queue.
The xTasksWaitingToSend field is an xList that links together
all the tasks waiting to send a message into the queue when
that operation cannot be performed immediately because the
queue is completely full
The xTasksWaitingToReceive has the same purpose as
xTasksWaitingToSend but for tasks waiting to receive a
message from an empty queue

2https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 9 / 40

TAB 1. Contents of a FreeRTOS message queue data structure

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 10 / 40

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c

FIG 6. State of the main FreeRTOS data structures involved in a context switch
after the context of task B has been restored

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 11 / 40

Using Queue in FreeRTOS
The xQueueCreate() function3 creates a queue and returns a
QueueHandle_t that references the queue it just created
(Table 2).

1 QueueHandle_t xQueueCreate(UBaseType_t
uxQueueLength,

2 UBaseType_t uxItemSize
);

TAB 2. xQueueCreate() parameters and return value

Parameter Parameter description and usage note

uxQueueLength The maximum number of items that the queue being created can hold at any one time.

uxItemSize The size in bytes of each data item that can be stored in the queue.

Return Value If NULL is returned, then the queue cannot be created because there is insufficient heap memory available for
FreeRTOS to allocate the queue data structures and storage area. A non-NULL value being returned indicates that the
queue has been created successfully. The returned value should be stored as the handle to the created queue.

After a queue has been created the xQueueReset()4 API
function can be used to return the queue to its original empty
state.

3https://www.freertos.org/a00116.html
4https://www.freertos.org/a00018.html#xQueueReset

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 12 / 40

Using Queue in FreeRTOS
xQueueSendToBack() is used to send data to the back (tail)
of a queue.

1 BaseType_t xQueueSendToBack(QueueHandle_t
xQueue,const void * pvItemToQueue,TickType_t
xTicksToWait);

xQueueSend() is equivalent to, and exactly the same as,
xQueueSendToBack()5

xQueueSendToFront() is used to send data to the front
(head) of a queue.

1 BaseType_t xQueueSendToFront(QueueHandle_t
xQueue,const void * pvItemToQueue,TickType_t
xTicksToWait);

xQueueReceive() is used to receive (read) an item from a
queue. The item that is received is removed from the queue.

1 BaseType_t xQueueReceive(QueueHandle_t xQueue,
void * const pvBuffer, TickType_t
xTicksToWait);

5These methods should never be called from an interrupt service routine.
Instead, use the interrupt-safe versions xQueueSendToFrontFromISR() and
xQueueSendToBackFromISR()

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 13 / 40

Using Queue in FreeRTOS
uxQueueMessagesWaiting() is used to query the number of
items that are currently in a queue.

1 UBaseType_t uxQueueMessagesWaiting(QueueHandle_t
xQueue);

vQueueDelete() delete a queue when its message queue is
no longer needed in order to reclaim its memory for future
use

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 14 / 40

https://www.freertos.org/a00116.html
https://www.freertos.org/a00018.html#xQueueReset

TAB 3. Summary of the main message-queue related primitives of FreeRTOS

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 15 / 40

Example

FIG 7. Expected sequence of execution

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 16 / 40

Example
1 static void vSenderTask(void *pvParameters){
2 int32_t lValueToSend;
3 BaseType_t xStatus;
4 lValueToSend = (int32_t) pvParameters;
5 while(true){/*
6 -The first parameter is the queue to which data

is being sent
7 -The second parameter is the address of the data

to be sent
8 -The third parameter is the block time */
9 xStatus = xQueueSendToBack(xQueue, &

lValueToSend, 0);
10 if(xStatus != pdPASS){
11 /* Error because the queue was full */
12 }
13 }
14 }

LISTING 3: Example: Implementation of the sending task used
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 17 / 40

1 static void vReceiverTask(void *pvParameters){
2 int32_t lReceivedValue;
3 BaseType_t xStatus;
4 const TickType_t xTicksToWait = pdMS_TO_TICKS(100

);
5 while(true){/*
6 -The first parameter is the queue the data is to

be received.
7 -The second is the buffer that will receive the

data into.
8 -The third parameter is the block time */
9 xStatus=xQueueReceive(xQueue,&lReceivedValue,

xTicksToWait);
10 if(xStatus == pdPASS){
11 /* Data was successfully received from the

queue*/
12 }
13 else{
14 //Error: data was not received after waiting

for 100ms
15 }
16 }
17 }

LISTING 4: Example: Implementation of the receiver task

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 18 / 40

1 QueueHandle_t xQueue;
2 int main(void){
3 /* The queue is created to hold a maximum of 5

values*/
4 xQueue = xQueueCreate(5,sizeof(int32_t));
5 if(xQueue!=NULL)
6 {
7 xTaskCreate(vSenderTask, "Sender1", 1000,(void*)

100,1,NULL);
8 xTaskCreate(vSenderTask,"Sender2",1000,(void*)

200,1,NULL);
9 xTaskCreate(vReceiverTask,"Receiver",1000,NULL

,2,NULL);
10 /*Start the scheduler and let the RTOS take over

*/
11 vTaskStartScheduler();
12 }
13 else
14 {
15 /* The queue could not be created. */
16 }
17 }

LISTING 5: Example: the implementation of main() function

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 19 / 40

Mailboxes

Mailboxes
In general,mailbox are similar to queues6

Mailbox functions:
Create a mailbox
Write to a mailbox
Read from a mailbox
Check if a mailbox has any message
Destroy an unused mailbox

They exits several variations in different RTOSs7

Typical use of a mailbox
A mailbox is used to hold data that can be read by any task
The data does not pass through the mailbox, but instead
remains in the mailbox until it is overwritten. The sender
overwrites the value in the mailbox.
The receiver reads the value from the mailbox, but does not
remove the value from the mailbox.

6In FreeRTOS, a mailbox is a queue that has a length of one
7There is no consensus on terminology within the embedded community, and

“mailbox” will mean different things in different RTOSesKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 20 / 40

Mailboxes in FreeRTOS
In FreeRTOS, a mailbox is a queue that has a length of one

The xQueueOverwrite() API8
xQueueOverwrite() should only be used with queues that have
a length of one.
Like the xQueueSendToBack() API function, the
xQueueOverwrite() API function sends data to a queue.
Unlike xQueueSendToBack(), if the queue is already full, then
xQueueOverwrite() will overwrite data that is already in the
queue.

1 BaseType_t xQueueOverwrite(QueueHandle_t
xQueue,

2 const void *
pvItemToQueue
);

The xQueuePeek() API Function9

Used to receive an item from a queue without removing it from
the queue.
Receives data from the head of the queue, without modifying
the data stored in the queue, or the order in which data is
stored in the queue.

8https://www.freertos.org/xQueueOverwrite.html
9https://www.freertos.org/xQueuePeek.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 21 / 40

https://www.freertos.org/xQueueOverwrite.html
https://www.freertos.org/xQueuePeek.html

Example
vUpdateMailbox() writes a random integer value to the
mailbox every 500ms
vReadMailbox() reads that integer value from the mailbox
after every 100ms

1 #include <FreeRTOS.h>
2 #include <queue.h>
3 #include <time.h>
4 #include <stdlib.h>
5 QueueHandle_t xMailbox;
6 TaskHandle_t updateTaskHandle;
7 TaskHandle_t readTaskHandle;
8 void main(void) {
9 xMailbox = xQueueCreate(1,sizeof(int32_t));

10 xTaskCreate(vUpdateMailbox,"S", 100,NULL,1,&
updateTaskHandle);

11 xTaskCreate(vReadMailbox,"R", 100,NULL,1,&
readTaskHandle);

12 }

LISTING 6: Implementation of main the mailbox tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 22 / 40

1 void vUpdateMailbox(void *pvParameters){
2 srand(time(NULL));
3 while(true){
4 int new_mail_box_value = rand();
5 xQueueOverwrite(xMailbox, &new_mail_box_value);
6 vTaskDelay(500/portTICK_RATE_MS);
7 }
8 }
9 BaseType_t vReadMailbox(void *pvParameters){

10 int received_value =0;
11 while(true){
12 xQueuePeek(xMailbox, &received_value,

portMAX_DELAY);
13 //The received value stored in the

value_received
14 fprintf("The received value is %d\n",

received_value)
15 vTaskDelay(100/ portTICK_RATE_MS);
16 }
17 }

LISTING 7: Implementation of the mailbox tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 23 / 40

Timer Functions

Timer Functions
Embedded systems generally require to track time.
A cell phone preserves battery by turning its display off after
a few seconds. Network connections re-transmit data if an
acknowledgement is not received within a certain period.
Most RTOSs have a delay function that delays for a certain
time period.
Each of the tones representing a digit in a phone call must
sound for 1/10th of a second followed by the same period of
silence between tones.
For example, use the function vTaskDelay(100 /
portTICK_RATE_MS)

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 24 / 40

Questions
How do I know that vTaskDelay () works as intended?
—delays based on system ticks as its parameter
How accurate is vTaskDelay ()?—It is accurate to the nearest
tick
How does the RTOS know how to setup the timer hardware
?—RTOSs are microprocessor-dependent and hence the
engineers that wrote the RTOS know which processor it will
run on and hence can program the corresponding timer. If
the timer hardware is non-standard, the user is required to
write his own timer setup and interrupt routines that will be
called by the RTOS.
What is the “normal length” for a system tick?

There isn’t one.
Short system times provide accurate timings with the added
disadvantage of occupying the processor more and reducing
throughput.
The designer must make a trade-off between the two.
In FreeRTOS, the tick is 1 ms by default10

10see mode details at http://www.learnitmakeit.com/freertos-tick/

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 25 / 40

Questions
What if the system requires extremely accurate timing?11

Use short system ticks
For an extremely accurate timing, one must use dedicated
hardware timer for functions requiring accurate times and the
RTOS for all other timings.
The advantage of using the OS is that one timer handles
many operations simultaneously.
You should not create a timer that will be way too fast for the
system to process.
In short, the faster the tick the more interrupt and the more
scheduler overhead
FreeRTOS uses the microcontroller’s TCB0 timer to generate
its own tick interrupt. The FreeRTOS kernel measures the
time using the tick, and every time a tick occurs, the scheduler
checks if a task should be woken up or unblocked.
The configCPU_CLOCK_HZ define must be configured for the
FreeRTOS timings to be correct.
If more than one task has the same priority, the FreeRTOS
scheduler will switch between these tasks at every tick if
configUSE_TIME_SLICING is set to 1.
Thus, using a higher tick rate causes the CPU time for each
task to be smaller.

11You can find more FreeRTOS utilities at https://www.freertos.org/a00021.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 26 / 40

FreeRTOS software timer

What and why use software timer15

We saw that a task can create a non-blocking timer with:
vTaskDelay—block the currently running task for a given time
xTaskGetTickCount()—non-blocking delay based on a known
timestamp
hardware timer—but this is tedious and not portable

Software timers—like tasks—allow to trigger actions at a
given frequency
Unlike tasks, software timers require little overhead12

Software timers do not rely on the underlying hardware
timers of the microcontroller, instead, they use the FreeRTOS
tick counter.
Timer Accuracy—affected by the FreeRTOS’s scheduling
algorithm
Timer Resolution13—low and depends on FreeRTOS’s tick
frequency14

12Miranda, B. D., de Oliveira, R. S., & Carminati, A. (2021, July). Analysis of
FreeRTOS Overheads on Periodic Tasks.
https://doi.org/10.5753/wperformance.2021.15728

13The timer resolution is the smallest unit of time that the timer can measure
14This makes the software timers, not a good fit for scenarios requiring time

resolution higher that 1ms.
15For more details read chap 5 of Richard Berry’s“Mastering the FreeRTOS Real

Time Kernel - a Hands On Tutorial Guide”, which focuses on software timer
management in FreeRTOS

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 27 / 40

http://www.learnitmakeit.com/freertos-tick/
https://www.freertos.org/a00021.html
https://doi.org/10.5753/wperformance.2021.15728

How to use software timer?17

Turn them on with the following entry in FreeRTOSConfig.h
1 #define configUSE_TIMERS 1

Similarly, you can configure the timer task name, priority and
stack

1 #define configTIMER_SERVICE_TASK_NAME "Tmr Svc"
2 #define configTIMER_TASK_PRIORITY (

configMAX_PRIORITIES - 1)
3 #define configTIMER_TASK_STACK_DEPTH(

configMINIMAL_STACK_SIZE)

Note:
It is a good idea to give the timer highest task priority in the
system, otherwise, there will be some latency in the timer
hook execution.
The timer stack size really depends on what you are doing in
the timer hooks called from the timer task16

16To find out what your tasks are using on the stack, see Understanding
FreeRTOS Task Stack Usage

17API details at
https://www.freertos.org/FreeRTOS-Software-Timer-API-Functions.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 28 / 40

FreeRTOS time working principles

They do not use the CPU
unless their callback
function is executing
When a timer is created, it is
assigned a callback function
that is called whenever the
timer expires
The timer service or
Deamon keeps an ordered
list of software timers—with
the timer to expire next in
front of the list.
The Timer Service task is
not continuously running

Each timer’s waking time
is known
When a timer has expired,
the Timer Service task
calls its callback

FIG 8. FreeRTOS software timer

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 29 / 40

Software Timer Callback Functions
Regular C function
They must have the following function prototype

1 void ATimerFunctionCallback(TimerHandle_t
xTimer);

The callback functions execute from start to finish, and exit in
the normal way.
The callback functions should be kept short
The callback functions must not enter the blocked state

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 30 / 40

Types software timers
One-shot timers—Once started, it will execute its callback
function once only. A one-shot timer can be restarted
manually, but will not restart itself.
Auto-reload timers—Once started, it will re-start itself each
time it expires, resulting in periodic execution of its callback
function.

FIG 9. The difference in behavior between one-shot and auto-reload software
timers
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 31 / 40

https://dzone.com/articles/understanding-freertos-task-stack-usage-and-kernel
https://dzone.com/articles/understanding-freertos-task-stack-usage-and-kernel
https://www.freertos.org/FreeRTOS-Software-Timer-API-Functions.html

Software timer states
Dormant—exists, and can be referenced by its handle, but is
not running, so its callback functions will not execute.
Running —execute its callback function after a time equal to
its period has elapsed since the software timer entered the
Running state, or since the software timer was last reset.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 32 / 40

Software timer states

FIG 10. Auto-reload software timer states and transitions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 33 / 40

Software timer states

FIG 11. One-shot software timer states and transitions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 34 / 40

The Context of a Software Timer
The FreeRTOS daemon task is standard FreeRTOS task that
is created automatically when the scheduler is started.
Its Its priority and stack size should be set in the
FreeRTOSConfig.h file
The FreeRTOS daemon should not enter the blocked
state—thus, the software timer callback functions must not
call FreeRTOS API functions that will result in the calling task
entering the blocked state
The daemon task is scheduled like any other FreeRTOS task
depending on its priority

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 35 / 40

Creating a software timer
Software timers can be created before the scheduler is running,
or from a task after the scheduler has been started18

1 TimerHandle_t xTimerCreate(const char * const
pcTimerName,

2 TickType_t xTimerPeriodInTicks,UBaseType_t
uxAutoReload,

3 void * pvTimerID,TimerCallbackFunction_t
pxCallbackFunction);

TAB 4. xTimerCreate() parameters and return value

Parameter Explaination and significance

pcTimerName Name assigned for purely debugging purposes
xTimerPeriod The period of the timer. The period is specified in ticks thus the macro pdMS_TO_TICKS() can be used to convert a

time specified in milliseconds to a time specified in ticks.
uxAutoReload If uxAutoReload is set to pdTRUE, then the timer will expire repeatedly with a frequency set by the xTimerPeriod

parameter. If it is set to pdFALSE, then the timer will be a one-shot and enter the dormant state after it expires.
pvTimerID An identifier that is assigned to the timer being created qnd used in the timer callback function to identify which timer

expired when the same callback function is assigned to more than one timer
pxCallbackFunction The function to call when the timer expires. Callback functions must have the prototype defined by TimerCallback-

Function_t, which is:

18https://www.freertos.org/FreeRTOS-timers-xTimerCreate.htmlKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 36 / 40

Starting a software timer
A timer previously created with xTimerCreate() gets started with19

1 BaseType_t xTimerStart(TimerHandle_t xTimer,
2 TickType_t xTicksToWait)

;

TAB 5. xTimerStart parameters and return values

Parameter Explaination and significance

xTimer The handle of the timer being started/restarted.
xBlockTime Specifies the time, in ticks, that the calling task should be held in the Blocked state to wait for the start command to be

successfully sent to the timer command queue
Returns

The handle of the software timer being started or reset.
pdFAIL will be returned if the start command could not be sent to the timer
command queue even after xBlockTime ticks had passed.
pdPASS will be returned if the command was successfully sent to the timer
command queue.

19https://www.freertos.org/FreeRTOS-timers-xTimerStart.html
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 37 / 40

Interrupt Routines in an
RTOS

Interrupts and Tasks
Similarities between tasks and ISRs

Both provide a way of achieving parallel code execution.
Both only run when required.
Both can be written with C/C++ (ISRs generally no longer
need to be written in assembly code).

Differences between tasks and ISRs:
ISRs are brought into context by hardware while tasks gain
context by the RTOS kernel
ISRs must exit as quickly as possible while tasks are more
forgiving. For example, FreeRTOS tasks are often set up to
run in an infinite while loop
ISR functions do not take input parameters while tasks can
ISRs may only access a limited ISR-specific subset of the
FreeRTOS API
ISRs may operate completely independently of all RTOS code
All ISRs share the same system stack while each task has a
dedicated stack

An interrupt service routine is a hardware feature. Tasks will
only run when there are no ISRs run-
ning,so the lowest priority interrupt will interrupt the highest priority task, and there is no way for a task to preempt an ISR.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 38 / 40

https://www.freertos.org/FreeRTOS-timers-xTimerCreate.html
https://www.freertos.org/FreeRTOS-timers-xTimerStart.html

Interrupt Routines in an RTOS
In an RTOS, interrupts follows two rules that do not apply to task
code

Rule #1—ISR must not call any RTOS function that might
block the caller20

An RTOS interrupt must not get a semaphore
An RTOS interrupt must not read from an empty queue or
mailbox
An RTOS interrupt must not wait for an event
An RTOS interrupt must not wait for mutex else it has to wait
for other critical section code to finish before the critical codes
in the ISR can run.
It must run to completion to reset hardware to be ready for
next interrupt

Rule #2—ISR may not call any RTOS function that cause
task switching, unless RTOS knows that it is an ISR —thus
will not switch task

An RTOS interrupt must not release semaphores
It must not write to mailboxes, queues on which tasks may be
waiting

If an interrupts break these rule, the RTOS might switch
control away from the interrupt routine to run another task,
and the interrupt may not complete for a long time and would
block all lower-priority interrupts —or even all interrupts

20FreeRTOS interrupt provides an interrupt safe version. They always end with
“FromISR” and are exempt from this rule. See for example
xQueueReceiveFromISR API

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 39 / 40

Using the FreeRTOS API from
interrupts

Most of the FreeRTOS primitives have ISR-safe versions of
their APIs.
For example, xQueueSend() has an equivalent ISR-safe
version, xQueueSendFromISR().
One should never call a FreeRTOS non ISR-safe function
from an ISR.
Notable peculiarities of the the ISR-safe version:

The FromISR variants won’t block—For example, if
xQueueSendFromISR encounters a full queue, it will
immediately return.
The FromISR variants require an extra parameter, BaseType_t
*pxHigherPriorityTaskWoken, which will indicate whether or
not a higher priority task needs to be switched into context
immediately following the interrupt.
Only interrupts that have a logically lower priority than what is
defined by configMAX_API_CALL_INTERRUPT_PRIORITY in
FreeRTOSConfig.h are permitted to call FreeRTOS API
functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part II November 16, 2022 40 / 40

The End

https://www.freertos.org/a00120.html

	Message Queues
	Mailboxes
	Timer Functions
	FreeRTOS software timer
	Interrupt Routines in an RTOS
	The End

