Readings

An Embedded
u Read Chap 7 of Software Primer

e "/ib:

Simon, D. E. (1999).
An Embedded
Software Primer
m Read Chap 5 and 6
. of Richard B. (2019).
RTOS services —Part I Mastering the

FreeRTOS Real Time

Kizito NKURIKIYEYEZU, . o
Ph.D. - icnotiwr;mtwiiﬁcation

m timer services

m Queue, mailbox,
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022 1/40

David E. Simon e

Message queues, Mailboxes and
Pipes

m Inter-task communication is necessary to coordinate their
activities or share data. It can be done via a global variable
but this is error-prone and difficult

m Synchronization and messaging provides the necessary
communication between tasks in one system to tasks in
another system.

m Besides shared variables and semaphores, tasks can
communicate with each other using queues, mailboxes and
pipes.The RTOS guarantees that the functions provided for
using these mechanisms are reentrant

m Mailbox—data buffer that can store a fixed number of
messages of a fixed size
m Queues —allow passing information between tasks without
incurring overwrites from other tasks or entering into a race
condition

Message Queues

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16,2022 2/40

Message Queues
m Simple Example
m Let’s say there are two tasks, Task1 and Task2, each with high
priority things to do
m When an error accurs, the two tasks must report it
m However, error reporting is time consuming and might prevent
these tasks to do their job properly.
m Thus, another task, ErrorsTask, handles error reporting
m Question: How to implement this in an RTOS?—Use an
RTOS queue'’

November 16, 2022

3TOS services —Part Il

void vLog_error_log_task (string error) {
queue_add (error) ;
}
void vLog_error_processing_task (string
error_message) {
while (true) {
string error = queue_read_error();
if (error != NULL) {
error to an

LISTING 2: Error logging tasks snippet

Note:
m The queue_add() add an error to the RTOS queue
m The queue_read_error() read an error from the head of the

void Taskl (void) {
while (true) {
if (system_error()) {
string error = get_error_message();
vLog_error_log_task (error) ;

}
void Task2 (void) {
while (true) {
if (system_error()) {
string error = get_error_message();
vLog_error_log_task (error) ;

LisTING 1: Task1 and Task2 implementation snippets

November 16,2022 4/40

Queue in FreeRTOS

m A queue can hold a finite number of fixed size data items.

m Queues are normally used as FIFO buffers, where data is
written to the end (tail) of the queue and removed from the
front (head) of the queue.

m Itis also possible to write to the front of a queue, and to
overwrite data that is already at the front of a queue

Task A
Queve

FIG 1. A queue is created to allow Task A and Task B to communicate. The
queue can hold a maximum of 5 integers. When the queue is created it do
not contain any values so is empty.

November 16, 2022

November 16, 2022

RTOS services —Part Il

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

Queue

son i)

FIG 2. Task A writes (sends) the value of a local variable to the back of the
queue. As the queue was previously empty the value written is now the only
item in the queue, and is therefore both the value at the back of the queue and
the value at the front of the queue.

Queue

FIG 4. Task B reads from the queue into a different variable. The value
received by Task B is the value from the head of the queue, which is the first
value Task A wrote to the queue (i.e., 10 here)

Task 8

Queue

Send ?

Task A
Queue

FIG 3. Task A changes the value of its local variable before writing it to the
queue again. The queue now contains copies of both values written to the
queue. The first value written remains at the front of the queue, the new value
is inserted at the end of the queue. Three empty spaces are remaining.

FIG 5. Task B has removed one item, leaving only the second value written by
Task A remaining in the queue. This is the value Task B would receive next if it
read from the queue again. The queue now has four empty spaces remaining.

RTOS services —Part November 16,2022 8/40

Kizito NKURIKIYEYEZU, Ph.D.

RTOS services —Part November 16,2022 7/40

Queue in FreeRTOS
All xXQUEUE have the following fields?:

m uxLength and uxltemSize indicate what is the maximum
number of messages that it can hold, and the size of each
message in bytes, respectively.
pcHead and pcTail delimit the message storage zone
associated with the queue. In particular, pcHead points to the
base, that is, the lowest address of the memory area, and
pcTail points to one byte more than the highest address of
the area.
pcReadFrom and pcWrite To delineate the full portion of the
message storage zone, and separate it from the free
message storage space.
uxMessagesWaiting counts how many messages are
currently in the queue.

m The xTasksWaltlngToSend field is an xLlst that links together

waiting end a2 m into whe
KETEREDRKIYET: S lph A EHe A The R TR

Kizito NKURIKIYEYEZU, Ph.D,

TAB 1. Contents of a FreeRTOS message queue data structure

Fiold Purpose

uxLength Maximum queue capacity (# of messages)
uxItenSize Message size in byt

pcHead Lowest address of message storage zone
pcTail Highest address of message storage zone +1
pcReadFrom Address of oldest full element -uxItemSize
pcWriteTo Address of next free element
uxMessagesWaiting # of messages currently in the queue
xTasksWaitingToSend List of tasks waiting to send a message
xTasksWaitingToReceive List of tasks waiting to rece a message
*RxLock Send queue lock flag and message counter
xTxLock ceive quete lock flag and message counter

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il R)

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c

Using Queue in FreeRTOS

m The xQueueCreate() function® creates a queue and returns a
QueueHandle_t that references the queue it just created

Stack of task A ‘Stack of task B

=tk] (Table 2).
ool o\ —'“'Lﬁee prep— Free stack space
oo (1 QueueHandle_t xQueueCreate(UBaseType_t
uxQueueLength,
2 UBaseType_t uxItemSize

Topots);
TCB of task A
TAB 2. xQueueCreate() parameters and return value

Parameter___Parameter description and usage note
uxGueueLengih_The maximum number o tems tha the queu being created can hold at any one {ime.
FIG 6. State of the main FreeRTOS data structures involved in a context switch udiemSize The size in bytes of each data item that can be stored in the queue,
after the context of task B has been restored Rt Vae 1 NULL i ratinc, then the Quaue cannolbe crestod because therefs rslicen hesp memory vadat
ATOS toal o non indiates tha

The tored as the handle 1o the created queve.

m After a queue has been created the xQueueReset()* API

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022 11/40 Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022 12/40
Using Queue in FreeRTOS Using Queue in FreeRTOS
m xQueueSendToBack() is used to send data to the back (tail) m uxQueueMessagesWaiting() is used to query the number of
of a queue. items that are currently in a queue.

BaseType_t xQueueSendToBack (QueueHandle_ t

1 UBaseType_t uxQueueMessagesWaiting (QueueHandle_t
xQueue, const void * pvItemToQueue, TickType t

xQueue) ;
xTicksToWait); !
m xQueueSend|() is equivalent to, and exactly the same as, m vQueueDelete() delete a queue when its message queue is
xQueueSendToBack()® no longer needed in order to reclaim its memory for future
m xQueueSendToFront() is used to send data to the front use
(head) of a queue.
1 BaseType_t xQueueSendToFront (QueueHandle_t
xQueue, const void * pvItemToQueue, TickType t
xTicksToWait);
m xQueueReceive() is used to receive (read) an item from a

queue. The item that is received is removed from the queue.

RTOS services —Part Il

https://www.freertos.org/a00116.html
https://www.freertos.org/a00018.html#xQueueReset

TAB 3. Summary of the main message-queue related primitives of FreeRTOS

Function Purpose Optional
XQueueCreate Create a message queue -
vQueueDelete Delete a message queue -
xQueueSendToBack Send a message -
xQueueSendToFront Send a high-priority message -

from an interrupt handler -
from an interrupt handler -

xQueueSendToBackFromISR
xQueueSendToFrontFromISR

xQueueReceive Receive a message -
xQueueReceiveFronISR from an interrupt handler -
xQueuePeek Nondestructive receive

Query current queue length -
from an interrupt handler -
Check if a queue is empty -

Check if a queue is full -

uxQueueMessageshaiting
uxQueueMessageshaitingFronISR
xQueueIsQueueEnptyFromISR
xQueueIsQueueFullFromISR

November 16, 2022

Example

T-The Recewer task runs st because Tt has e

e Recelver ask empes e quete
the ed stale again. This
{imo Sonder 1 ume aer o Rezoor has
blocked.

to wait for data to become available. Sender 2 runs after
the Raceiver has blocked.

Receiver
Sender 2
Sender 1

2 Sonder 2ries T e Queue,causing e 1
Recaiver to exit the Blocked state.
Recaver hae s amest oy 50 rempis

4 - Sender 1 writes to the queue, causing [,
the Receiver to exit the Blocked state and
pre-empt Sender 1 - and so it goes on

Sender

zito NKURIKIVEYEZ November 16, 2022

izito NKURIKIYEYEZ

Example

1 static void vSenderTask (void spvParameters) {
2 int32_t 1lValueToSend;
3 BaseType_ t xStatus;

4 1ValueToSend = (int32_t) pvParameters;

5 while (true) {/~

3 is the quet to ch data

7 is the adc of the data

8 The third rameter is the ck time x/

9 xStatus = xQueueSendToBack (xQueue, &
1valueToSend, 0);

10 if (xStatus != pdPASS) {

E the queue

November 16, 2022

static void vReceiverTask(void xpvParameters) {
int32_t 1lReceivedValue;

BaseType t xStatus;

const TickType_t xTicksToWait = pdMS_TO_TICKS(100
)i

while (true) {/+

~The first param s the

the

data

into.
—The thi
xStatus=xQueueReceive (
xTicksToWait) ;
if (xStatus

/ *

the block time */

xQueue, &1ReceivedValue,

rd parameter is

deASS)1
sfully

November 16, 2022

1 QueueHandle_t xQueue;

2 int main(void) {

3 uetl

4 xQueue = xQueueCreate(5,sizeof(int32_t));
5 if (xQueue!=NULL)

s

7 xTaskCreate (vSenderTask, "Senderl", 1000, (voidx)
100, 1,NULL) ;
8 xTaskCreate (vSenderTask, " er2",1000, (voidx)
200,1,NULL) ;
9 xTaskCreate (VReceiverTask, "Receiver", 1000, NULL
,2,NULL) ;
10 I 1
1 vTaskStartScheduler () ;
2}
3 else
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16,2022 1940
Mailboxes

m |n general,mailbox are similar to queues®
m Mailbox functions:
m Create a mailbox
m Write to a mailbox
= Read from a mailbox
m Check if a mailbox has any message
m Destroy an unused mailbox
m They exits several variations in different RTOSs’
m Typical use of a mailbox
m A mailbox is used to hold data that can be read by any task
m The data does not pass through the mailbox, but instead
remains in the mailbox until it is overwritten. The sender
overwrites the value in the mailbox.
m The receiver reads the value from the mailbox, but does not

—remove-thevaluefrom the mailbox.
6In FreeRTOS, a mailbox is a queue that has a length of one

"There is no consensus on terminology within the embedded community, and

Mailboxes

Mailboxes in FreeRTOS

In FreeRTOS, a mailbox is a queue that has a length of one
m The xQueueOverwrite() API®

m xQueueOverwrite() should only be used with queues that have
a length of one.

m Like the xQueueSendToBack() API function, the
xQueueOverwrite() API function sends data to a queue.

m Unlike xQueueSendToBack(), if the queue is already full, then
xQueueOverwrite() will overwrite data that is already in the

queue.

1 BaseType_t xQueueOverwrite (QueueHandle_t
XQueue,

2 const void x

pvItemToQueue
)i

m The xQueuePeek() API Function®
m Used to receive an item from a queue without removing it from

https://www.freertos.org/xQueueOverwrite.html
https://www.freertos.org/xQueuePeek.html

Example
m vUpdateMailbox() writes a random integer value to the
mailbox every 500ms
m vReadMailbox() reads that integer value from the mailbox
after every 100ms

1+ #include <FreeRTOS.h>

2 #include <queue.h>

3 #include <time.h>

+ #include <stdlib.h>

s QueueHandle_t xMailbox;

s TaskHandle_t updateTaskHandle;

7 TaskHandle_t readTaskHandle;

8 void main (void) {

9 xMailbox = xQueueCreate (l,sizeof (int32_t));

10 xTaskCreate (vUpdateMailbox,"s", 100,NULL,1, &
updateTaskHandle) ;

" xTaskCreate (vReadMailbox, "R", 100,NULL, 1, &

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16,2022 22/40

Timer Functions

1 void vUpdateMailbox (void spvParameters) {
2 srand (time (NULL)) ;
3 while(true) {

4 int new_mail_box_value = rand();
5 xQueueOverwrite (xMailbox, &new_mail_box_value);
6 vTaskDelay (500/port TICK_RATE_MS) ;

s}

9 BaseType_t vReadMailbox (void xpvParameters) {

10 int received_value =0;

1 while (true) {

12 xQueuePeek (xMailbox, &received_value,
portMAX_ DELAY) ;

14 fprintf("The is %d\n",
received_value)
15 vTaskDelay (100/ portTICK_RATE_MS);
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022 23/40

Timer Functions

m Embedded systems generally require to track time.
A cell phone preserves battery by turning its display off after
a few seconds. Network connections re-transmit data if an
acknowledgement is not received within a certain period.
Most RTOSs have a delay function that delays for a certain
time period.
Each of the tones representing a digit in a phone call must
sound for 1/10th of a second followed by the same period of
silence between tones.
For example, use the function vTaskDelay(100 /
portTICK_RATE_MS)

Kizito NKURIKIVEYEZU, Ph.D. RTOS services —Part Il November 16,2022 24 /40

Questions

m How do | know that vTaskDelay () works as intended?
—delays based on system ticks as its parameter
m How accurate is vTaskDelay ()?—It is accurate to the nearest
tick
m How does the RTOS know how to setup the timer hardware
?—RTOSs are microprocessor-dependent and hence the
engineers that wrote the RTOS know which processor it will
run on and hence can program the corresponding timer. If
the timer hardware is non-standard, the user is required to
write his own timer setup and interrupt routines that will be
called by the RTOS.
m What is the “normal length” for a system tick?
m There isn't one.
m Short system times provide accurate timings with the added
disadvantage of occupying the processor more and reducing
throughput.

Kizito NKURIKIYEYEZU, Ph.D.

RTOS services —Part Il November 16,2022 25/40

FreeRTOS software timer

Questions

m What if the system requires extremely accurate timing?'’

m Use short system ticks

m For an extremely accurate timing, one must use dedicated
hardware timer for functions requiring accurate times and the
RTOS for all other timings.

m The advantage of using the OS is that one timer handles
many operations simultaneously.

m You should not create a timer that will be way too fast for the
system to process.

m In short, the faster the tick the more interrupt and the more
scheduler overhead

m FreeRTOS uses the microcontroller's TCBO timer to generate
its own tick interrupt. The FreeRTOS kernel measures the
time using the tick, and every time a tick occurs, the scheduler
checks if a task should be woken up or unblocked.

m The conﬁgCPU CLOCK_HzZ deflne must be configured for the

ng be co
Kizito NKURIKIYEYEZU, .D. 708 sovices —art November 16,2022 2640

What and why use software timer'®

m We saw that a task can create a non-blocking timer with:

m vTaskDelay—block the currently running task for a given time

m xTaskGetTickCount()—non-blocking delay based on a known
timestamp

m hardware timer—but this is tedious and not portable

m Software timers—like tasks—allow to trigger actions at a
given frequency

m Unlike tasks, software timers require little overhead'?

m Software timers do not rely on the underlying hardware
timers of the microcontroller, instead, they use the FreeRTOS
tick counter.

m Timer Accuracy—affected by the FreeRTOS’s scheduling
algorithm

m Timer Resolution'>—low and depends on FreeRTOS's tick

14

'2Miranda, , de Oliveira, R. S., & Carminati,
Kizito NKURIKIYEYEZU, Ph.D.

A. (2021, July). Analysis of

RTOS services —Part Il November 16,2022 27 /40

http://www.learnitmakeit.com/freertos-tick/
https://www.freertos.org/a00021.html
https://doi.org/10.5753/wperformance.2021.15728

H 17
How to use software timer?
= Turn them on with the following entry in FreeRTOSConfig.h
1 #define configUSE_TIMERS 1
m Similarly, you can configure the timer task name, priority and
stack
1 #define configTIMER_SERVICE_TASK_NAME "Tmr Svc"
2 #define configTIMER_TASK_PRIORITY (
configMAX_PRIORITIES - 1)
3 #define configTIMER TASK_STACK_DEPTH (
configMINIMAL_STACK_SIZE)

Note:

m |tis a good idea to give the timer highest task priority in the
system, otherwise, there will be some latency in the timer
hook execution.

m The timer stack size really depends on what you are doing in

%themmer—heek&ealled from the timer task‘5

Novombr 16,2022

Software Timer Callback Functions
m Regular C function
m They must have the following function prototype

~RT0S services —partl

Kizito NKURIKIYEYEZU, Ph.D. 28140

1 void ATimerFunctionCallback (TimerHandle_t
xTimer);

m The callback functions execute from start to finish, and exit in
the normal way.

m The callback functions should be kept short

m The callback functions must not enter the blocked state

Kizito NKURIKIYEYEZ!

FreeRTOS time working principles

m They do not use the CPU
unless their callback Tka |
function is executing —

m When a timer is created, itis
assigned a callback function { ™*)
that is called whenever the
timer expires

FIG 8. FreeRTOS software timer
m The timer service or

Deamon keeps an ordered

list of software timers—with

the timer to expire next in

front of the list.
m The Timer Service task is

not continuously running
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il

November 16,2022 29740

Types software timers
m One-shot timers—Once started, it will execute its callback
function once only. A one-shot timer can be restarted
manually, but will not restart itself.
m Auto-reload timers—Once started, it will re-start itself each
time it expires, resulting in periodic execution of its callback

function.
The one shot timer [,
executes once only |
Period of i Period of
Timer 1 equals 6 Timer 2 equals 5
Timer1 (one-shot) -
Timer2 (auto-reload)’ - - -

231516 (7819 1 13 5 ti7

Both timers are

The auto-reload timer executes| .
started at time t1

repeatedly with fixed period

FIG 9. The difference in behavior between one-shot and auto-reload software

RTOS services —Part Il

November 16, 2022

November 16,2022 31

https://dzone.com/articles/understanding-freertos-task-stack-usage-and-kernel
https://dzone.com/articles/understanding-freertos-task-stack-usage-and-kernel
https://www.freertos.org/FreeRTOS-Software-Timer-API-Functions.html

Software timer states Software timer states

m Dormant—exists, and can be referenced by its handle, but is
not running, so its callback functions will not execute.

m Running —execute its callback function after a time equal to
its period has elapsed since the software timer entered the XTimerStop() |
Running state, or since the software timer was last reset. called

xTimerCreate()
called

Dormant <—

/

xTimerStart(),
xTimerReset() or
\ xTimerChangePeriod()

/ called
Running <

Timer expired /
Execute Callback

FIG 10. Auto-reload software timer states and transitions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part November 16,2022 32/40 Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part November 16,2022 33/40

Software timer states The Context of a Software Timer

— m The FreeRTOS daemon task is standard FreeRTOS task that
is created automatically when the scheduler is started.

XxTimerCreate()
Dormant < called m lts Its priority and stack size should be set in the
. 4 FreeRTOSConfig.h file
. e XT'“:;'E?"O] m The FreeRTOS daemon should not enter the blocked
Exeonts Callback [xTimerstart(), state—thus, the software timer callback functions must not
1 T'XT":(‘:ey:Reseg) ‘?’d call FreeRTOS API functions that will result in the calling task
e N *TimerChangePeriod() entering the blocked state
Running }4/ m The daemon task is scheduled like any other FreeRTOS task
\, % depending on its priority

FIG 11. One-shot software timer states and transitions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16,2022 34 /40 Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022

Creating a software timer
Software timers can be created before the scheduler is running,
or from a task after the scheduler has been started'®

Starting a software timer

A timer previously created with xTimerCreate() gets started with'®

1 TimerHandle_t xTimerCreate(const char x const 1 BaseType_t xTimerStart (TimerHandle t xTimer,
pcTimerName, 2 TickType t xTicksToWait)
2 TickType_ t xTimerPeriodInTicks,UBaseType_t ;
uxAutoReload,
3 void * pvTimerID, TimerCallbackFunction_ t

pxCallbackFunction); TAB 5. xTimerStart parameters and return values

Parameter Explaination and significance

TAB 4. xTimerCreate() parameters and return value XTimer The handie of the timer being startedrestarted.
xBlockTime ‘Speciles the time, n ticks, that the caling task should be held n the Blocked state to wait fo the sart command to be
Parameter Explaination and significance Suczassfully sont o he timer command queus
peTimertiame Namo assigned for purely dabugging purposes fetums = The handie of the software tmer being tared of reset.
*Timer The period of the timer. The period s specied n tcks thus the macro pAMS_TO_TICKS() can be used o convert a = BOFAL vl bo rotrned e start comand ouk ot b st o e mer

uxAutoReload

time specfied n milissconds to a ime specified i fcks.

If uxAutoReload is set to pATRUE, then the timer
parameter I 15 510 OFALSE, hen hetier wilbe & one-shot and e the Germant st aftr 1 xpres.

command queue even after xBlockTime ticks had pass
it

command queve.

pYTimerlD An identfier that ne timer bel
expired when the
The fncton o cal when

ciion_, whichis:

Kizito NKURIKIYEYEZU, Ph.D.

pxCallbackFunction o fonctons st e h protype defned by TimrCalback

19https://www.freertos.org/FreeRTOS-timers-xTimerStart.html

RTOS services —Part Il November 16,2022 36140 Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part November 16,2022 37140

Interrupts and Tasks
m Similarities between tasks and ISRs

m Both provide a way of achieving parallel code execution.

m Both only run when required.

m Both can be written with C/C++ (ISRs generally no longer

need to be written in assembly code).
- - m Differences between tasks and ISRs:
|ntel’l‘u pt ROUtI neS | n an m ISRs are brought into context by hardware while tasks gain
context by the RTOS kernel

RTOS m ISRs must exit as quickly as possible while tasks are more
forgiving. For example, FreeRTOS tasks are often set up to
run in an infinite while loop
ISR functions do not take input parameters while tasks can
ISRs may only access a limited ISR-specific subset of the
FreeRTOS API
ISRs may operate completely independently of all RTOS code
All ISRs share the same system stack while each task has a

dedicated K
Kizito NKURIKIVEYEZU, Ph.D. RTOS services —Part Il November 16,2022 38/ 40

https://www.freertos.org/FreeRTOS-timers-xTimerCreate.html
https://www.freertos.org/FreeRTOS-timers-xTimerStart.html

Interrupt Routines in an RTOS
In an RTOS, interrupts follows two rules that do not apply to task
code
m Rule #1—ISR must not call any RTOS function that might
block the caller®
m An RTOS interrupt must not get a semaphore
m An RTOS interrupt must not read from an empty queue or
mailbox
m An RTOS interrupt must not wait for an event
m An RTOS interrupt must not wait for mutex else it has to wait
for other critical section code to finish before the critical codes
in the ISR can run.
m It must run to completion to reset hardware to be ready for
next interrupt
m Rule #2—ISR may not call any RTOS function that cause
task switching, unless RTOS knows that it is an ISR —thus
will not switch task
@]

Kizito NKURIKIYEYE: RTOS services —Partll

Using the FreeRTOS API from
interrupts

m Most of the FreeRTOS primitives have ISR-safe versions of
their APls.

m For example, xQueueSend() has an equivalent ISR-safe
version, xQueueSendFromISR().

= One should never call a FreeRTOS non ISR-safe function
from an ISR.

m Notable peculiarities of the the ISR-safe version:

m The FromISR variants won't block—For example, if
xQueueSendFromISR encounters a full queue, it will
immediately return.

m The FromISR variants require an extra parameter, BaseType_t
*pxHigherPriority TaskWoken, which will indicate whether or
not a higher priority task needs to be switched into context
immediately following the interrupt.

m Only interrupts that have a logically lower priority than what is
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part Il November 16, 2022 40/40

FreeRTOSConfig.h are permitted}o call FreeRTOS API
functions

https://www.freertos.org/a00120.html

	Message Queues
	Mailboxes
	Timer Functions
	FreeRTOS software timer
	Interrupt Routines in an RTOS
	The End

