
Scheduling of Dependent Tasks

Kizito NKURIKIYEYEZU, Ph.D.

Readings

Read Chapter 3 of Cottet et al. (2002).
Scheduling in Real-Time Systems.
Topics

Task precedence relationships
Sharing critical resources
Mutual exclusion
Priority inversion
Deadlock

1Readings are based on Cottet, F., Delacroix, J., Mammeri, Z., & Kaiser, C. (2002). Scheduling in
Real-Time Systems. Wiley.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 1 / 25

Introduction
The previous lecture assumed tasks were independent, i.e., there was no
relationship between them
This is too simplistic and does not reflect reality
In most real-world application, inter-task cooperation and inter-task
dependencies are a must

some tasks must respect the processing order

mutual exclusion to protect shared resources
precedence constraints that correspond to synchronization or communication
among tasks

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 2 / 25

Introduction
The previous lecture assumed tasks were independent, i.e., there was no
relationship between them
This is too simplistic and does not reflect reality
In most real-world application, inter-task cooperation and inter-task
dependencies are a must

some tasks must respect the processing order
mutual exclusion to protect shared resources

precedence constraints that correspond to synchronization or communication
among tasks

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 2 / 25

Introduction
The previous lecture assumed tasks were independent, i.e., there was no
relationship between them
This is too simplistic and does not reflect reality
In most real-world application, inter-task cooperation and inter-task
dependencies are a must

some tasks must respect the processing order
mutual exclusion to protect shared resources
precedence constraints that correspond to synchronization or communication
among tasks

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 2 / 25

Tasks with Precedence Relationships
precedence constraint between two tasks τi and τj is denoted as τi → τj if the
execution of task τi precedes that of task τj .
In this case, task τj must await the completion of task τi before it can execute

FIG 1. Example of two precedence graphs related to a set of nine tasks
The relationships is described through a graph where the nodes represent tasks and the arrows
express the precedence constraint between two nodes.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 3 / 25

Tasks with Precedence Relationships
The previous precedence acyclic graph, however, represents a partial order on
the task set.
In general, we consider cases where n successive instance of a task can
precede one instance of another task or vice versa.
Fig. 2 shows an example of a generalized precedence relationship where the
rate of communicating task are not equal.

FIG 2. Example of a generalized precedence relationship between two tasks with different periods

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 4 / 25

Tasks with Precedence Relationships
Let’s consider an example of in which τi has to communicate its results to task τj

τi and τj have to be scheduled in a way that the execution of the k th instance of
task τi precedes the the execution of the k th instance of the task τj . Thus,
these task have the same rate, i.e., Ti = Tj

Ti ̸= Tj , then tasks will run at the lowest rate sooner or later; consequently, the
task with the shortest period will miss its deadline1.

FIG 3. Example of two precedence graphs related to a set of nine tasks.
Note that tasks τ1 to τ5 have the same period and tasks τ6 to τ9 also have the same period.

1Unless there is a mitigating mechanisms such as cyclical asynchronous message buffers that are
beyond the scope of this course

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 5 / 25

Tasks with Precedence Relationships
Let’s consider an example of in which τi has to communicate its results to task τj

τi and τj have to be scheduled in a way that the execution of the k th instance of
task τi precedes the the execution of the k th instance of the task τj . Thus,
these task have the same rate, i.e., Ti = Tj
Ti ̸= Tj , then tasks will run at the lowest rate sooner or later; consequently, the
task with the shortest period will miss its deadline1.

FIG 3. Example of two precedence graphs related to a set of nine tasks.
Note that tasks τ1 to τ5 have the same period and tasks τ6 to τ9 also have the same period.

1Unless there is a mitigating mechanisms such as cyclical asynchronous message buffers that are
beyond the scope of this course

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 5 / 25

Tasks with Precedence Relationships
if τi → τj , then the task parameters must be in accordance with the following rules2:

release times: rj ≥ ri

priorities: priorityi ≥ priorityj , in accordance with the scheduling algorithm

2Błazewicz, J. (1979). Deadline scheduling of tasks with ready times and resource constraints.
Information Processing Letters, 8(2), 60–63. https://doi.org/10.1016/0020-0190(79)90143-1

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 6 / 25

Precedence constraints and fixed-priority
with rate monotonic algorithm

We consider the rate monotonic (RM) and deadline monotonic (DM) algorithms
In RM, tasks with shorter period get higher priorities.
We want to respect this rule and figure out how to modify the task parameters
in order to take account of precedence constraints, i.e. to obtain an
independent task set with modified parameters with the following rules:

A task cannot start before its predecessors
A task cannot preempt its successors.

If τi → τj , then the release time and the priority of task parameters must be
modified as follows:

r ∗j ≥ max(rj , r ∗i), where r ∗i is the modified release time of task τi

priorityi ≥ pirorityj in according with the RM algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 7 / 25

Precedence constraints and fixed-priority
with rate monotonic algorithm

We consider the rate monotonic (RM) and deadline monotonic (DM) algorithms
In RM, tasks with shorter period get higher priorities.
We want to respect this rule and figure out how to modify the task parameters
in order to take account of precedence constraints, i.e. to obtain an
independent task set with modified parameters with the following rules:

A task cannot start before its predecessors
A task cannot preempt its successors.

If τi → τj , then the release time and the priority of task parameters must be
modified as follows:

r ∗j ≥ max(rj , r ∗i), where r ∗i is the modified release time of task τi
priorityi ≥ pirorityj in according with the RM algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 7 / 25

Example

FIG 4. Precedence graphs of a set of six tasks

TAB 1. Example of priority mapping taking care of
precedence constraints and using the RM
scheduling algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 8 / 25

Example

FIG 4. Precedence graphs of a set of six tasks

TAB 1. Example of priority mapping taking care of
precedence constraints and using the RM
scheduling algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 8 / 25

Precedence constraints and fixed-priority
with deadline monotonic algorithm

With the deadline monotonic scheduling algorithm, tasks with shorter relative
deadline get higher priorities
The modifications of task parameters are close to those applied for RM
scheduling except that the relative deadline is also changed in order to respect
the priority assignment.
If τi → τj , then the release time, the relative deadline and the priority of the
task parameters must be modified as follows:

r ∗j ≥ max(rj , r ∗i), when r ∗i is the modified release time of task τi

D∗
j ≥ max(Dj ,D∗

i), when D∗
i is the modified relative deadline of task τi

priorityi ≥ priorityj in accordance with the DM scheduling algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 9 / 25

Precedence constraints and fixed-priority
with deadline monotonic algorithm

With the deadline monotonic scheduling algorithm, tasks with shorter relative
deadline get higher priorities
The modifications of task parameters are close to those applied for RM
scheduling except that the relative deadline is also changed in order to respect
the priority assignment.
If τi → τj , then the release time, the relative deadline and the priority of the
task parameters must be modified as follows:

r ∗j ≥ max(rj , r ∗i), when r ∗i is the modified release time of task τi

D∗
j ≥ max(Dj ,D∗

i), when D∗
i is the modified relative deadline of task τi

priorityi ≥ priorityj in accordance with the DM scheduling algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 9 / 25

Precedence constraints and fixed-priority
with deadline monotonic algorithm

With the deadline monotonic scheduling algorithm, tasks with shorter relative
deadline get higher priorities
The modifications of task parameters are close to those applied for RM
scheduling except that the relative deadline is also changed in order to respect
the priority assignment.
If τi → τj , then the release time, the relative deadline and the priority of the
task parameters must be modified as follows:

r ∗j ≥ max(rj , r ∗i), when r ∗i is the modified release time of task τi

D∗
j ≥ max(Dj ,D∗

i), when D∗
i is the modified relative deadline of task τi

priorityi ≥ priorityj in accordance with the DM scheduling algorithm

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 9 / 25

Precedence constraints and the EDF
algorithm
review—the earliest deadline first (EDF) algorithm assigns priority to tasks
according to their absolute deadline: the task with the earliest deadline will be
executed as the highest priority.

with the EDF algorithm, the modification of task parameters relies on the
deadline d .
Rules for modifying release times and deadlines of tasks are based on the
following observations3, 4:

1 To get τi → τj , the release time r ∗j of task τj must be greater than or equal to its
initial value or to the new release times τ∗

i of its immediate predecessors τi
increased by their execution times Ci

r ∗i ≥ max((r ∗i + Ci), rj) (1)

3Blazewicz J. (1997), Scheduling dependent tasks with different arrival times to meet deadlines, in
Beilner H. and Gelenbe E. (eds) Modeling and Performance Evaluation of Computer Systems, North
Holland, Amsterdam, pp. 57–65

4Chetto H., Silly M. and Bouchentouf T.(1990), Dynamic scheduling of real-time tasks under
precedence constraints, Journal of Real-Time Systems, 2: 181–194Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 10 / 25

Constraints and the EDF algorithm
2 If we have to get τi → τj , the deadline d∗

i of task τi has to be replaced by the
minimum between its initial value di by the new dealine d∗

j of the immediate
successors τj decreased by their execution times Cj :

d∗
i ≥ min((d∗

j − Cj),di) (2)

FIG 5. Modifications of task parameters in the case of EDF scheduling
The modifications begin with the tasks that have no predecessors for modifying their release times
and with those with no successors for changing their deadlines. Please see example on page 54.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 11 / 25

Tasks Sharing Critical Resources

Resource Sharing
example of shared resource—data structures (e.g., queue), variables, main
memory area, file, set of registers, I/O unit, etc.
Many shared resources do not allow simultaneous accesses but require
mutual exclusion . These resources are called exclusive resources.
No two tasks are allowed to operate on the resource at the same time.
Protection methods: interrupt disabling5 and using semaphore or mutex
In FreeRTOS, The taskENTER_CRITICAL() and taskEXIT_CRITICAL()
provide a basic critical section implementation that works by simply disabling
interrupts, either globally, or up to a specific interrupt priority level.

1

2 taskENTER_CRITICAL();
3 /* access to some exclusive resource*/
4 taskEXIT_CRITICAL();

LISTING 1: Mutual exclusion by disabling interrupts in FreeRTOS

5must be kept very short, otherwise they will adversely affect interrupt response times.
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 12 / 25

Resource Sharing

Task J2 has higher priority than task J1

Task J1 is activated first and use the resource
R (i.e, enters the critical section)
If task J2 (with higher priority) tries access
the processor, it will preempt task J1.
However, if it tries to access the shared
resources, it is blocked due to the mutual
exclusion guaranteed by the semaphore.
When blocked, the task J1 can resume its
execution and complete using the resource R
This may lead to an uncontrolled blocking
time for task J2—which should normally run
first since it has higher priority
How do we solve this?

FIG 6. Two tasks sharing one resource

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 13 / 25

Mutual exclusion
In FreeRTOS , a mutex is a special type of semaphore that is used to control
access to a resource that is shared between two or more tasks.

When used in a mutual exclusion scenario, the mutex can be thought of as a
token that is associated with the resource being shared.
For a task to access the resource legitimately, it must first successfully take the
token. When the token holder has finished with the resource, it must give the
token back.
Only when the token has been returned can another task successfully take the
token, and then safely access the same shared resource.

1 SemaphoreHandle_t xMutex
2 int main(void){
3 xMutex = xSemaphoreCreateMutex()
4 if(xMutex != NULL){
5 // Create tasks that use the mutex
6 }

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 14 / 25

Mutual exclusion
In FreeRTOS , a mutex is a special type of semaphore that is used to control
access to a resource that is shared between two or more tasks.

When used in a mutual exclusion scenario, the mutex can be thought of as a
token that is associated with the resource being shared.
For a task to access the resource legitimately, it must first successfully take the
token. When the token holder has finished with the resource, it must give the
token back.
Only when the token has been returned can another task successfully take the
token, and then safely access the same shared resource.

1 SemaphoreHandle_t xMutex
2 int main(void){
3 xMutex = xSemaphoreCreateMutex()
4 if(xMutex != NULL){
5 // Create tasks that use the mutex
6 }

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 14 / 25

1 void vTask1(void *pvParameters){
2 while(true){
3 ...
4 xSemaphoreTake(xMutex,portMAX_DELAY);
5 /* access to exclusive resource */
6 xSemaphoreGive(xMutex)
7 ...
8 }
9 }

10 void vTask2(void *pvParameters){
11 while(true){
12 ...
13 xSemaphoreTake(xMutex,portMAX_DELAY);
14 /* access to exclusive resource */
15 xSemaphoreGive(xMutex)
16 ...
17 }
18 }

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 15 / 25

Priority inversion
Priority inversion may occur in preemptive scheduling that is driven by fixed
priority and where critical resources are protected by a mutual exclusion
mechanism.

Priority inversion —a case where a medium priority task is executed prior to a
high priority task; this occurs because the latter is blocked —for an unbounded
amount of time —by a low priority task. It is a consequence of shared resource
access.
Priority inversion, contravenes the scheduling specification and can induce
deadline missing

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 16 / 25

Priority inversion
Priority inversion may occur in preemptive scheduling that is driven by fixed
priority and where critical resources are protected by a mutual exclusion
mechanism.
Priority inversion —a case where a medium priority task is executed prior to a
high priority task; this occurs because the latter is blocked —for an unbounded
amount of time —by a low priority task. It is a consequence of shared resource
access.

Priority inversion, contravenes the scheduling specification and can induce
deadline missing

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 16 / 25

Priority inversion
Priority inversion may occur in preemptive scheduling that is driven by fixed
priority and where critical resources are protected by a mutual exclusion
mechanism.
Priority inversion —a case where a medium priority task is executed prior to a
high priority task; this occurs because the latter is blocked —for an unbounded
amount of time —by a low priority task. It is a consequence of shared resource
access.
Priority inversion, contravenes the scheduling specification and can induce
deadline missing

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 16 / 25

Priority inversion
Consider a task set composed of four tasks τ1, τ2,τ3,τ4 having decreasing priorities
(i.e., τ1 has the highest priority and τ4 the lowest) and where Tasks τ2 and τ4 share
a critical resource R1, the access of which is mutually exclusive

FIG 7. Example of priority inversion phenomenon
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 17 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.

When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.

Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait

When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked

The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.

During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

Priority inversion
The lowest priority task τ4 starts its execution first and after some time it enters
a critical section using resource R1.
When task τ4 is in its critical section, the higher priority task τ2 is released and
preempts task τ4

During the execution of task τ2 , task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait
When task τ2 needs to enter its critical section, associated with the critical
resource R1 shared with task τ4, it finds that the corresponding resource R1 is
held by task τ4.—Thus it is blocked
The highest priority task able to execute is task τ3, So task τ3, gets the
processor and runs.
During this execution, the highest priority task τ1 awakes. As a consequence
task τ3 is suspended and the processor is allocated to task τ1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 18 / 25

At the end of execution of task τ1, task τ3 can resume its execution until it
reaches the end of its code.
Now, only the lowest priority task τ4, preempted in its critical section, can
execute again. It resumes its execution until it releases critical resource R1
required by the higher priority task τ2

Then, task τ2 can resume its execution by holding critical resource R1
necessary for its activity
Remarks:

Task τ2’s maximum blocking time varies and depends on the duration of the
critical section of the lower priority tasks sharing the resource with it (e.g., τ2)
The blocking time also depends on the execution time of the higher priority task τ1
A lower priority task, τ3, increased the blocking time of a higher priority task τ2,
even if τ3 does not share any critical resource with τ2
When there is priority inversion, the blocking time of each task cannot be
bounded—this can lead to uncontrolled response time of each task.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 19 / 25

Why this course?

FIG 8. Artist’s conception of NASA’s Mars
Exploration Rover on Mars. It’s mission almost
failed due priority inversion.

FIG 9. Instrumentation of the Mars Rover

2http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 20 / 25

http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

Mars rover and priority inversion
A few days into the mission, the rover began experiencing total system resets,
each resulting in losses of data2.
Priority inversion was the root cause because VxWorks6’s preemptive priority
scheduling

Its bus management task ran frequently with high priority and access to the bus
was synchronized with mutual exclusion locks
The meteorological data gathering task ran a low priority thread and acquire a
mutex when publishing its data, writes to the bus, and release the mutex
A communications task that ran with medium priority.

It was possible for an interrupt to occur that caused the the medium priority
communications task to be scheduled during the short interval while the high
priority information bus thread was blocked waiting for the low priority
meteorological data thread, consequently preventing the blocked information
bus task from running.

2http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
6VxWorks is a deterministic, priority-based preemptive RTOS with low latency and minimal jitter and

is used for mission critical embedded systems. https://en.wikipedia.org/wiki/VxWorks
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 21 / 25

http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
https://en.wikipedia.org/wiki/VxWorks

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach

but it creates unnecessary blocking as unrelated tasks may be blocked.
Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Solutions to Priority Inversion
Disallow preemption during the execution of all critical sections.

simple approach
but it creates unnecessary blocking as unrelated tasks may be blocked.

Resource access protocols—modify the priority of those tasks that cause
blocking. When a task τi blocks one or more higher priority tasks, it temporarily
assumes a higher priority. Several approaches exist:

Priority Inheritance Protocol (PIP), for static priorities7, 8

Priority Ceiling Protocol (PCP), for static priorities9

Stack Resource Policy (SRP), for static and dynamic priorities10

7https://www.embedded.com/introduction-to-priority-inversion/
8https://www.embedded.com/how-to-use-priority-inheritance/
9https://en.wikipedia.org/wiki/Priority_ceiling_protocol

10https://en.wikipedia.org/wiki/Stack_Resource_Policy
Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 22 / 25

https://www.embedded.com/introduction-to-priority-inversion/
https://www.embedded.com/how-to-use-priority-inheritance/
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy

Priority Inheritance Protocol
summary—When a task τi blocks one or more higher priority tasks, it
temporarily assumes (inherits) the highest priority of the blocked tasks. It
allows this task to use the critical resource as early as possible without going
through the preemption. It avoids the unbounded priority inversion11.
assumptions

n tasks which cooperate through m shared resources
fixed priorities
all critical sections on a resource begin with a take() and end with a give operation

advantages
It allows the different priority tasks to share the critical resources.
it avoids the unbounded priority inversion.

disadvantages
can lead to deadlock12

can lead to chain blocking13

11https://www.geeksforgeeks.org/priority-inheritance-protocol-pip-in-synchronization/
12https://en.wikipedia.org/wiki/Deadlock
13https://www.informit.com/articles/article.aspx?p=30188&seqNum=3

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 23 / 25

https://www.geeksforgeeks.org/priority-inheritance-protocol-pip-in-synchronization/
https://en.wikipedia.org/wiki/Deadlock
https://www.informit.com/articles/article.aspx?p=30188&seqNum=3

Deadlock phenomenon
summary—a situation in which two or more tasks are blocked indefinitely because
each task is waiting for a resource acquired by another blocked task (Fig. 10).

FIG 10. Example of the deadlock phenomenon

Two tasks τ1 and τ1 use two critical resources R1 and R2.
τ1 and τ2 access R1 and R2 in reverse order. Moreover, the priority of task τ1
is greater than that of task τ2.
Now, suppose that task τ2 executes first and locks resource R1.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 24 / 25

Deadlock phenomenon
During the critical section of task τ2 using resource R1, task τ1 awakes and
preempts task τ2 before it can lock the second resource R2.
Task τ1 needs resource R2 first, which is free, and it locks it.
Then task τ1 needs resource R1, which is held by task τ2. So task τ2 resumes
and asks for resource R2, which is not free.
The final result is that task τ2 is in possession of resource R1 but is waiting for
resource R2 and task τ1 is in possession of resource R2 but is waiting for
resource R1.
Neither task τ1 nor task τ2 will release the resource until its pending request is
satisfied.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of Dependent Tasks December 1, 2022 25 / 25

The end

	Tasks Sharing Critical Resources
	Introduction
	The end

