
Understanding FreeRTOS:

A Requirement Analysis

Ming-Yuan Zhu

CoreTek Systems, Inc.
1109 CEC Building

6 South Zhongguancun Street
Beijing 100086

People’s Republic of China
E-Mail: zhumy@coretek.com.cn



Contents

1 Introduction 2
1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . 3

1.2 RTOS Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Multitasking Vs Concurrency . . . . . . . . . . . . . . . . 4
1.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Context Switching . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Real Time Applications . . . . . . . . . . . . . . . . . . . 6
1.2.6 Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . 8

2 Tasks and Coroutines in FreeRTOS 11
2.1 Concepts of Tasks and Coroutines . . . . . . . . . . . . . . . . . 11

2.1.1 Characteristics of a ‘Task’ . . . . . . . . . . . . . . . . . . 11
2.1.2 Task Summary . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Characteristics of a ‘Coroutine’ . . . . . . . . . . . . . . . 12
2.1.4 Coroutine Summary . . . . . . . . . . . . . . . . . . . . . 12

2.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Task States . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Task Priorities . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Implementing a Task . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Task Creation Macros . . . . . . . . . . . . . . . . . . . . 14
2.2.5 The Idle Task . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 The Idle Task Hook . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Demo Application Examples . . . . . . . . . . . . . . . . 18

2.3 RTOS Kernel Utilities . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Queue Implementation . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Semaphore Implementation . . . . . . . . . . . . . . . . . 19
2.3.3 Tick Hook Function . . . . . . . . . . . . . . . . . . . . . 20

2.4 Trace Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



CONTENTS ii

3 Application Programming Interfaces of FreeRTOS 22
3.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Task API . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Coroutine API . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Configuration Customization . . . . . . . . . . . . . . . . . . . . 23
3.2.1 ‘config’ Parameters . . . . . . . . . . . . . . . . . . . . 24

3.2.1.1 configUSE PREEMPTION . . . . . . . . . . . . . . 24
3.2.1.2 configUSE IDLE HOOK . . . . . . . . . . . . . . . 24
3.2.1.3 configUSE TICK HOOK . . . . . . . . . . . . . . . 24
3.2.1.4 configCPU CLOCK HZ . . . . . . . . . . . . . . . 24
3.2.1.5 configTICK RATE HZ . . . . . . . . . . . . . . . 24
3.2.1.6 configMAX PRIORITIES . . . . . . . . . . . . . . 25
3.2.1.7 configMINIMAL STACK SIZE . . . . . . . . . . . 25
3.2.1.8 configTOTAL HEAP SIZE . . . . . . . . . . . . . 25
3.2.1.9 configMAX TASK NAME LEN . . . . . . . . . . . . 25
3.2.1.10 configUSE TRACE FACILITY . . . . . . . . . . . 25
3.2.1.11 configUSE 16 BIT TICKS . . . . . . . . . . . . . 25
3.2.1.12 configIDLE SHOULD YIELD . . . . . . . . . . . . 26
3.2.1.13 configUSE USE MUTEXES . . . . . . . . . . . . . 27
3.2.1.14 configUSE CO ROUTINES . . . . . . . . . . . . . 27
3.2.1.15 configMAX CO ROUTINE PRIORITIES . . . . . . . 27
3.2.1.16 configKERNEL INTERRUPT PRIORITY . . . . . . . 27

3.2.2 INCLUDE Parameters . . . . . . . . . . . . . . . . . . . . . 28
3.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Schemes Included in the Source Code Download . . . . . 29
3.3.1.1 Scheme 1 - heap 1.c . . . . . . . . . . . . . . . 29
3.3.1.2 Scheme 2 - heap 2.c . . . . . . . . . . . . . . . 29
3.3.1.3 Scheme 3 - heap 3.c . . . . . . . . . . . . . . . 30

3.4 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Task Management . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1.1 xTaskHandle . . . . . . . . . . . . . . . . . . . . 30
3.4.1.2 xTaskCreate . . . . . . . . . . . . . . . . . . . . 30
3.4.1.3 vTaskDelete . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Task Control . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2.1 vTaskDelay . . . . . . . . . . . . . . . . . . . . 33
3.4.2.2 vTaskDelayUntil . . . . . . . . . . . . . . . . . 34
3.4.2.3 uxTaskPriorityGet . . . . . . . . . . . . . . . . 35
3.4.2.4 vTaskPrioritySet . . . . . . . . . . . . . . . . 36
3.4.2.5 vTaskSuspend . . . . . . . . . . . . . . . . . . . 37
3.4.2.6 vTaskResume . . . . . . . . . . . . . . . . . . . . 38
3.4.2.7 vTaskResumeFromISR . . . . . . . . . . . . . . . 39

3.4.3 Kernel Control . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3.1 taskYIELD . . . . . . . . . . . . . . . . . . . . . 40
3.4.3.2 taskENTER CRITICAL . . . . . . . . . . . . . . . 40
3.4.3.3 taskEXIT CRITICAL . . . . . . . . . . . . . . . . 40
3.4.3.4 taskDISABLE INTERRUPTS . . . . . . . . . . . . . 40



CONTENTS iii

3.4.3.5 taskENABLE INTERRUPTS . . . . . . . . . . . . . 40
3.4.3.6 vTaskStartScheduler . . . . . . . . . . . . . . 41
3.4.3.7 vTaskEndScheduler . . . . . . . . . . . . . . . . 41
3.4.3.8 vTaskSuspendAll . . . . . . . . . . . . . . . . . 42
3.4.3.9 xTaskResumeAll . . . . . . . . . . . . . . . . . . 43

3.4.4 Task Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4.1 xTaskGetCurrentTaskHandle . . . . . . . . . . 44
3.4.4.2 xTaskGetTickCount . . . . . . . . . . . . . . . . 44
3.4.4.3 xTaskGetSchedulerState . . . . . . . . . . . . 45
3.4.4.4 uxTaskGetNumberOfTasks . . . . . . . . . . . . 45
3.4.4.5 vTaskList . . . . . . . . . . . . . . . . . . . . . 45
3.4.4.6 vTaskStartTrace . . . . . . . . . . . . . . . . . 46
3.4.4.7 ulTaskEndTrace . . . . . . . . . . . . . . . . . . 46

3.4.5 Queue Management . . . . . . . . . . . . . . . . . . . . . 47
3.4.5.1 uxQueueMessagesWaiting . . . . . . . . . . . . 47
3.4.5.2 vQueueDelete . . . . . . . . . . . . . . . . . . . 47
3.4.5.3 xQueueCreate . . . . . . . . . . . . . . . . . . . 47
3.4.5.4 xQueueSend . . . . . . . . . . . . . . . . . . . . 49
3.4.5.5 xQueueSendToBack . . . . . . . . . . . . . . . . 50
3.4.5.6 xQueueSendToFront . . . . . . . . . . . . . . . . 52
3.4.5.7 xQueueReceive . . . . . . . . . . . . . . . . . . 54
3.4.5.8 xQueuePeek . . . . . . . . . . . . . . . . . . . . 56
3.4.5.9 xQueueSendFromISR . . . . . . . . . . . . . . . . 58
3.4.5.10 xQueueSendToBackFromISR . . . . . . . . . . . . 59
3.4.5.11 xQueueSendToFrontFromISR . . . . . . . . . . . 61
3.4.5.12 xQueueReceiveFromISR . . . . . . . . . . . . . . 62

3.4.6 Semaphore Management . . . . . . . . . . . . . . . . . . . 64
3.4.6.1 SemaphoreCreateBinary . . . . . . . . . . . . . 64
3.4.6.2 xSemaphoreCreateMutex . . . . . . . . . . . . . 65
3.4.6.3 xSemaphoreTake . . . . . . . . . . . . . . . . . . 66
3.4.6.4 xSemaphoreGive . . . . . . . . . . . . . . . . . . 68
3.4.6.5 xSemaphoreGiveFromISR . . . . . . . . . . . . . 69

3.4.7 Coroutine Management . . . . . . . . . . . . . . . . . . . 71
3.4.7.1 xCoRoutineCreate . . . . . . . . . . . . . . . . 71
3.4.7.2 xCoRoutineCreate . . . . . . . . . . . . . . . . 72
3.4.7.3 crDELAY . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.7.4 crQUEUE SEND . . . . . . . . . . . . . . . . . . . 75
3.4.7.5 crQUEUE RECEIVE . . . . . . . . . . . . . . . . . 77
3.4.7.6 crQUEUE SEND FROM ISR . . . . . . . . . . . . . . 79
3.4.7.7 crQUEUE RECEIVE FROM ISR . . . . . . . . . . . . 81
3.4.7.8 vCoRoutineSchedule . . . . . . . . . . . . . . . 83



CONTENTS iv

4 FreeRTOS Implementation and Source Code Analysis 84
4.1 General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Source Code Distribution and Organization . . . . . . . . . . . . 86

4.2.1 Basic Directory Structure . . . . . . . . . . . . . . . . . . 86
4.2.2 RTOS Source Code Directory List . . . . . . . . . . . . . 87
4.2.3 Demo Application Source Code Directory List . . . . . . 88
4.2.4 Creating Your Own Application . . . . . . . . . . . . . . 88
4.2.5 Naming Conventions . . . . . . . . . . . . . . . . . . . . . 89
4.2.6 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.7 Local Operator Interface [Keypad and LCD] . . . . . . . 90
4.2.8 LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.9 RS232 PDA Interface . . . . . . . . . . . . . . . . . . . . 90
4.2.10 TCP/IP Interface . . . . . . . . . . . . . . . . . . . . . . 90
4.2.11 Application Components . . . . . . . . . . . . . . . . . . . 90
4.2.12 More Info . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.13 RTOS Demo Introduction . . . . . . . . . . . . . . . . . . 91

4.2.13.1 Demo Project Files . . . . . . . . . . . . . . . . 92
4.2.13.2 blockQ.c . . . . . . . . . . . . . . . . . . . . . . 92
4.2.13.3 comtest.c . . . . . . . . . . . . . . . . . . . . . 92
4.2.13.4 crflash.c . . . . . . . . . . . . . . . . . . . . . 93
4.2.13.5 crhook.c . . . . . . . . . . . . . . . . . . . . . . 93
4.2.13.6 death.c . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.13.7 dynamic.c . . . . . . . . . . . . . . . . . . . . . 94
4.2.13.8 flash.c . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.13.9 flop.c . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.13.10 integer.c . . . . . . . . . . . . . . . . . . . . . 95
4.2.13.11 pollQ.c . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.13.12 print.c . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.13.13 semtest.c . . . . . . . . . . . . . . . . . . . . . 96

4.3 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Task Control Block . . . . . . . . . . . . . . . . . . . . . . 96
4.3.3 Task State Diagram . . . . . . . . . . . . . . . . . . . . . 97

4.4 List Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 Ready and Blocked Lists . . . . . . . . . . . . . . . . . . . 99
4.4.3 List Initialization . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Inserting a Task Into a List . . . . . . . . . . . . . . . . . 102
4.4.5 Timer Counter Size and {DelayedTaskList} . . . . . . . 103

4.5 Context Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 C Development Tools . . . . . . . . . . . . . . . . . . . . 106
4.5.2 The RTOS Tick . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.3 GCC Signal Attribute . . . . . . . . . . . . . . . . . . . . 107
4.5.4 GCC Naked Attribute . . . . . . . . . . . . . . . . . . . . 108
4.5.5 FreeRTOS Tick Code . . . . . . . . . . . . . . . . . . . . 110
4.5.6 The AVR Context . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS v

4.5.7 Restoring the Context . . . . . . . . . . . . . . . . . . . . 114
4.5.8 Putting It All Together . . . . . . . . . . . . . . . . . . . 114

4.5.8.1 Context Switch - Step 1 . . . . . . . . . . . . . . 115
4.5.8.2 Context Switch - Step 2 . . . . . . . . . . . . . . 115
4.5.8.3 Context Switch - Step 3 . . . . . . . . . . . . . . 115
4.5.8.4 Context Switch - Step 4 . . . . . . . . . . . . . . 116
4.5.8.5 Context Switch - Step 5 . . . . . . . . . . . . . . 117
4.5.8.6 Context Switch - Step 6 . . . . . . . . . . . . . . 117
4.5.8.7 Context Switch - Step 7 . . . . . . . . . . . . . . 117

4.6 The FreeRTOS Scheduler . . . . . . . . . . . . . . . . . . . . . . 119
4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6.2 Task Context Frame . . . . . . . . . . . . . . . . . . . . . 120
4.6.3 Context Switch By Stack Pointer Manipulation . . . . . . 122
4.6.4 Starting and Stopping Tasks . . . . . . . . . . . . . . . . 122
4.6.5 Yeilding Between Ticks . . . . . . . . . . . . . . . . . . . 126
4.6.6 Starting the Scheduler . . . . . . . . . . . . . . . . . . . . 126
4.6.7 Suspending the Scheduler . . . . . . . . . . . . . . . . . . 128
4.6.8 Checking the Delayed Task List . . . . . . . . . . . . . . . 130

4.7 Critical Section Processing . . . . . . . . . . . . . . . . . . . . . . 130
4.8 Queue Management . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.8.2 Posting to a Queue from an ISR . . . . . . . . . . . . . . 134
4.8.3 Posting to a Queue from a Schedulable Task . . . . . . . 137
4.8.4 Receiving from a Queue C Schedulable Task and ISR . . 140

5 Summary and Conclusions 143



List of Figures

1.1 Contexts of Task in FreeRTOS . . . . . . . . . . . . . . . . . . 4
1.2 The Execution of Task in FreeRTOS . . . . . . . . . . . . . . . 5
1.3 The Context Switching of Tasks in FreeRTOS . . . . . . . . . . 7
1.4 Real-Time Scheduling in FreeRTOS . . . . . . . . . . . . . . . . 9

3.1 The Execution Pattern of Four Tasks at the Idle Priority . . . . 26

4.1 FreeRTOS Source Distribution . . . . . . . . . . . . . . . . . . 86
4.2 Basic Task State Diagram for FreeRTOS . . . . . . . . . . . . . 98
4.3 List Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 vListInsert with Arguments . . . . . . . . . . . . . . . . . . . . 102
4.5 Hypothetical DelayedTaskList . . . . . . . . . . . . . . . . . . . 103
4.6 Code Extract from Lists.c in FreeRTOS . . . . . . . . . . . . 104
4.7 Deciding Which Delayed List To Insert (from Task.c) . . . . . . 105
4.8 Exchanging List Pointers When Timer Overflows . . . . . . . . . 105
4.9 ISR for TICK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.10 The Context of AVR . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.11 The Context Switch - Step 1 . . . . . . . . . . . . . . . . . . . . 115
4.12 The Context Switch - Step 2 . . . . . . . . . . . . . . . . . . . . 116
4.13 The Context Switch - Step 3 . . . . . . . . . . . . . . . . . . . . 117
4.14 The Context Switch - Step 5 . . . . . . . . . . . . . . . . . . . . 118
4.15 The Context Switch - Step 6 . . . . . . . . . . . . . . . . . . . . 118
4.16 The Context Switch - Step 7 . . . . . . . . . . . . . . . . . . . . 119
4.17 Scheduler Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.18 Stacking of MCU Context . . . . . . . . . . . . . . . . . . . . . . 121
4.19 Context Frame on Stack 1 . . . . . . . . . . . . . . . . . . . . . . 122
4.20 Overview of Task Creation . . . . . . . . . . . . . . . . . . . . . . 124
4.21 Allocate Stack and TCB Memory . . . . . . . . . . . . . . . . . . 125
4.22 Dummy Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.23 FreeRTOS Task Scheduler Startup . . . . . . . . . . . . . . . . 127
4.24 Algorithms for vTaskSuspend and xTaskResumeAll . . . . . . . 129
4.25 Algorithm for vTaskIncrementTick . . . . . . . . . . . . . . . . 131
4.26 Queue Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.27 Algorithm for Sending to a Queue from an ISR . . . . . . . . . . 135

vi



LIST OF FIGURES vii

4.28 Remove Task From Event List . . . . . . . . . . . . . . . . . . . 136
4.29 Generic and Event Lists in TCB . . . . . . . . . . . . . . . . . . 137
4.30 Posting to a Queue From a Task . . . . . . . . . . . . . . . . . . 138
4.31 Posting to a Queue From a Task . . . . . . . . . . . . . . . . . . 139
4.32 Checking for Blocked Tasks On Queue Unlock . . . . . . . . . . . 141



List of Tables

4.1 Task Control Block for FreeRTOS . . . . . . . . . . . . . . . . . 97
4.2 Lists Created by the Scheduler . . . . . . . . . . . . . . . . . . . 99
4.3 Type xList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 Type xListItem . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Type xMiniListItem . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Queue Structure Elements . . . . . . . . . . . . . . . . . . . . . . 132

1



Chapter 1

Introduction

FreeRTOS is a real-time, preemptive operating system targeting embedded
devices. The FreeRTOS scheduling algorithm is dynamic and priority based.
Interprocess communication is achieved via message queues and basic binary
semaphores. Deadlocks are avoided by forcing all blocking processes to timeout
with the result that application developers are required to set and tune timeouts
and deal with resource allocation failures. Basic memory allocation schemes are
provided but more complex schemes can be directly coded and incorporated.
FreeRTOS provides some unique capabilities. Cooperative instead of preemp-
tive scheduling can be used and the scheduler can be suspended by any task for
any duration of time. No mechanisms to counter priority inversion are imple-
mented. Overall, FreeRTOS was determined to be slightly too feature-rich for
limited resource embedded devices. A simplified version may be beneficial to
certain communities.

The target of this report is to provide a survey of FreeRTOS including its
specifications and implementation according to all of its source code downloaded
and the documentation from the reports [Bar07] and [Goy07].

1.1 Synopsis

1.1.1 Features

The following standard features are provided.

• Choice of RTOS scheduling policy

1. Preemptive: Always runs the highest available task. Tasks of identi-
cal priority share CPU time (fully preemptive with round robin time
slicing).

2. Cooperative: Context switches only occur if a task blocks, or explic-
itly calls taskYIELD().

• Coroutines (light weight tasks that utilize very little RAM).

2



Introduction 3

• Message queues

• Semaphores [via macros]

• Trace visualization ability (requires more RAM)

• Majority of source code common to all supported development tools

• Wide range of ports and examples

Additional features can quickly and easily be added.

1.1.2 Design Philosophy

FreeRTOS is designed to be:

• Simple

• Portable

• Concise

Nearly all the code is written in C, with only a few assembler functions where
completely unavoidable. This does not result in tightly optimized code, but
does mean the code is readable, maintainable and easy to port. If performance
were an issue it could easily be improved at the cost of portability. This will
not be necessary for most applications.

The RTOS kernel uses multiple priority lists. This provides maximum appli-
cation design flexibility. Unlike bitmap kernels any number of tasks can share
the same priority.

1.2 RTOS Fundamentals

1.2.1 Multitasking

The kernel is the core component within an operating system. Operating sys-
tems such as Linux employ kernels that allow users access to the computer
seemingly simultaneously. Multiple users can execute multiple programs appar-
ently concurrently.

Each executing program is a task under control of the operating system. If
an operating system can execute multiple tasks in this manner it is said to be
multitasking.

The use of a multitasking operating system can simplify the design of what
would otherwise be a complex software application:

• The multitasking and inter-task communications features of the operating
system allow the complex application to be partitioned into a set of smaller
and more manageable tasks.



Introduction 4

Figure 1.1: Contexts of Task in FreeRTOS

• The partitioning can result in easier software testing, work breakdown
within teams, and code reuse.

• Complex timing and sequencing details can be removed from the applica-
tion code and become the responsibility of the operating system.

1.2.2 Multitasking Vs Concurrency

A conventional processor can only execute a single task at a time - but by rapidly
switching between tasks a multitasking operating system can make it appear as
if each task is executing concurrently. This is depicted by Figure 1.1 which shows
the execution pattern of three tasks with respect to time. The task names are
color coded and written down the left hand. Time moves from left to right,
with the colored lines showing which task is executing at any particular time.
The upper diagram demonstrates the perceived concurrent execution pattern,
and the lower the actual multitasking execution pattern.

1.2.3 Scheduling

The scheduler is the part of the kernel responsible for deciding which task should
be executing at any particular time. The kernel can suspend and later resume
a task many times during the task lifetime.



Introduction 5

Figure 1.2: The Execution of Task in FreeRTOS

The scheduling policy is the algorithm used by the scheduler to decide which
task to execute at any point in time. The policy of a (non real time) multi user
system will most likely allow each task a “fair” proportion of processor time.
The policy used in real time embedded systems is described later.

In addition to being suspended involuntarily by the RTOS kernel a task can
choose to suspend itself. It will do this if it either wants to delay (sleep) for
a fixed period, or wait (block) for a resource to become available (e.g. a serial
port) or an event to occur (eg a key press). A blocked or sleeping task is not
able to execute, and will not be allocated any processing time.

Referring to the numbers in Figure 1.2:

• At (1) task 1 is executing.

• At (2) the kernel suspends task 1 ...

• ... and at (3) resumes task 2.

• While task 2 is executing (4), it locks a processor peripheral for it’s own
exclusive access.

• At (5) the kernel suspends task 2 ...

• ... and at (6) resumes task 3.

• Task 3 tries to access the same processor peripheral, finding it locked task
3 cannot continue so suspends itself at (7).

• At (8) the kernel resumes task 1.

• Etc.

• The next time task 2 is executing (9) it finishes with the processor periph-
eral and unlocks it.



Introduction 6

• The next time task 3 is executing (10) it finds it can now access the
processor peripheral and this time executes until suspended by the kernel.

1.2.4 Context Switching

As a task executes it utilizes the processor / microcontroller registers and ac-
cesses RAM and ROM just as any other program. These resources together
(the processor registers, stack, etc.) comprise the task execution context.

A task is a sequential piece of code - it does not know when it is going to
get suspended or resumed by the kernel and does not even know when this has
happened. Consider the example of a task being suspended immediately before
executing an instruction that sums the values contained within two processor
registers.

While the task is suspended other tasks will execute and may modify the
processor register values. Upon resumption the task will not know that the pro-
cessor registers have been altered - if it used the modified values the summation
would result in an incorrect value.

To prevent this type of error it is essential that upon resumption a task has
a context identical to that immediately prior to its suspension. The operating
system kernel is responsible for ensuring this is the case - and does so by saving
the context of a task as it is suspended. When the task is resumed its saved
context is restored by the operating system kernel prior to its execution. The
process of saving the context of a task being suspended and restoring the context
of a task being resumed is called context switching as shown in Figure 1.3.

1.2.5 Real Time Applications

Real time operating systems (RTOS’s) achieve multitasking using these same
principals - but their objectives are very different to those of non real time
systems. The different objective is reflected in the scheduling policy. Real
time embedded systems are designed to provide a timely response to real world
events. Events occurring in the real world can have deadlines before which the
real time embedded system must respond and the RTOS scheduling policy must
ensure these deadlines are met.

To achieve this objective the software engineer must first assign a priority
to each task. The scheduling policy of the RTOS is then to simply ensure that
the highest priority task that is able to execute is the task given processing
time. This may require sharing processing time “fairly” between tasks of equal
priority if they are ready to run simultaneously.

Example:

The most basic example of this is a real time system that incorporates a keypad
and LCD. A user must get visual feedback of each key press within a reasonable
period - if the user cannot see that the key press has been accepted within
this period the software product will at best be awkward to use. If the longest
acceptable period was 100ms - any response between 0 and 100ms would be



Introduction 7

Figure 1.3: The Context Switching of Tasks in FreeRTOS



Introduction 8

acceptable. This functionality could be implemented as an autonomous task
with the following structure:

void vKeyHandlerTask(void *pvParameters)

{

// Key handling is a continuous process and as such the task

// is implemented using an infinite loop (as most real time

// tasks are).

for (;;)

{

[Suspend waiting for a key press] [Process the key press]

}

}

Now assume the real time system is also performing a control function that
relies on a digitally filtered input. The input must be sampled, filtered and the
control cycle executed every 2ms. For correct operation of the filter the temporal
regularity of the sample must be accurate to 0.5ms. This functionality could be
implemented as an autonomous task with the following structure:

void vControlTask(void *pvParameters)

{

for (;;)

{

[Suspend waiting for 2ms since the start of the previous cycle]

[Sample the input]

[Filter the sampled input]

[Perform control algorithm]

[Output result]

}

}

The software engineer must assign the control task the highest priority as:

1. The deadline for the control task is stricter than that of the key handling
task.

2. The consequence of a missed deadline is greater for the control task than
for the key handler task.

The next page demonstrates how these tasks would be scheduled by a real time
operating system.

1.2.6 Real-Time Scheduling

Figure 1.4 demonstrates how the tasks defined on the previous page would be
scheduled by a real time operating system. The RTOS has itself created a task
- the idle task - which will execute only when there are no other tasks able to
do so. The RTOS idle task is always in a state where it is able to execute.



Introduction 9

Figure 1.4: Real-Time Scheduling in FreeRTOS

Referring to Figure 1.4 above:

• At the start neither of our two tasks are able to run - vControlTask is wait-
ing for the correct time to start a new control cycle and vKeyHandlerTask

is waiting for a key to be pressed. Processor time is given to the RTOS
idle task.

• At time t1, a key press occurs. vKeyHandlerTask is now able to execute
- it has a higher priority than the RTOS idle task so is given processor
time.

• At time t2 vKeyHandlerTask has completed processing the key and up-
dating the LCD. It cannot continue until another key has been pressed so
suspends itself and the RTOS idle task is again resumed.

• At time t3 a timer event indicates that it is time to perform the next
control cycle. vControlTask can now execute and as the highest priority
task is scheduled processor time immediately.

• Between time t3 and t4, while vControlTask is still executing, a key
press occurs. vKeyHandlerTask is now able to execute, but as it has a
lower priority than vControlTask it is not scheduled any processor time.

• At t4 vControlTask completes processing the control cycle and cannot
restart until the next timer event - it suspends itself. vKeyHandlerTask is
now the task with the highest priority that is able to run so is scheduled
processor time in order to process the previous key press.

• At t5 the key press has been processed, and vKeyHandlerTask suspends
itself to wait for the next key event. Again neither of our tasks are able
to execute and the RTOS idle task is scheduled processor time.

• Between t5 and t6 a timer event is processed, but no further key presses
occur.



Introduction 10

• The next key press occurs at time t6, but before vKeyHandlerTask has
completed processing the key a timer event occurs. Now both tasks are
able to execute. As vControlTask has the higher priority vKeyHand-

lerTask is suspended before it has completed processing the key, and
vControlTask is scheduled processor time.

• At t8 vControlTask completes processing the control cycle and suspends
itself to wait for the next. vKeyHandlerTask is again the highest priority
task that is able to run so is scheduled processor time so the key press
processing can be completed.



Chapter 2

Tasks and Coroutines in
FreeRTOS

Coroutine functionality is new to FreeRTOS V4.0.0 and will continue to be de-
veloped through subsequent releases. FreeRTOS V4.0.0 is basically backward
compatible with earlier releases so the use of coroutines within an application
is completely optional.

The tasks and coroutine documentation pages provide information to allow
judgment as to when coroutine use may and may not be appropriate. Below is a
brief summary. Note that an application can be designed using just tasks, just
coroutines, or a mixture of both - however tasks and coroutines use different
API functions and therefore a queue (or semaphore) cannot be used to pass
data from a task to a coroutine or visa versa.

2.1 Concepts of Tasks and Coroutines

2.1.1 Characteristics of a ‘Task’

FreeRTOS versions prior to V4.0.0 allow a real time application to be structured
as a set of autonomous ‘tasks’ only. This is the traditional model used by an
RTOS scheduler.

In brief: A real time application that uses an RTOS can be structured as a
set of independent tasks. Each task executes within its own context with no
coincidental dependency on other tasks within the system or the scheduler itself.
Only one task within the application can be executing at any point in time and
the real time scheduler is responsible for deciding which task this should be.
The scheduler may therefore repeatedly start and stop each task (swap each
task in and out) as the application executes. As a task has no knowledge of
the scheduler activity it is the responsibility of the real time scheduler to ensure
that the processor context (register values, stack contents, etc) when a task is

11



Tasks and Coroutines 12

swapped in is exactly that as when the same task was swapped out. To achieve
this each task is provided with its own stack. When the task is swapped out
the execution context is saved to the stack of that task so it can also be exactly
restored when the same task is later swapped back in. See the How FreeRTOS
Works section for more information.

2.1.2 Task Summary

• Simple.

• No restrictions on use.

• Supports full preemption.

• Fully prioritized.

• Each task maintains its own stack resulting in higher RAM usage.

• Re-entrancy must be carefully considered if using preemption.

2.1.3 Characteristics of a ‘Coroutine’

FreeRTOS version V4.0.0 onwards allows a real time application to optionally
include coroutines as well as, or instead of, tasks. Coroutines are conceptually
similar to tasks but have the following fundamental differences (elaborated fur-
ther on the coroutine documentation page):

1. Stack usage. All the coroutines within an application share a single
stack. This greatly reduces the amount of RAM required compared to a
similar application written using tasks.

2. Scheduling and priorities. Coroutines use prioritized cooperative sc-
heduling with respect to other coroutines, but can be included in an ap-
plication that uses preemptive tasks.

3. Macro implementation. The coroutine implementation is provided th-
rough a set of macros.

4. Restrictions on use. The reduction in RAM usage comes at the cost
of some stringent restrictions in how coroutines can be structured.

2.1.4 Coroutine Summary

• Sharing a stack between coroutines results in much lower RAM usage.

• Cooperative operation makes re-entrancy less of an issue.

• Very portable across architectures.

• Fully prioritized relative to other coroutines, but can always be preempted
by tasks if the two are mixed.



Tasks and Coroutines 13

• Lack of stack requires special consideration.

• Restrictions on where API calls can be made.

• Co-operative operation only amongst coroutines themselves

2.2 Tasks

2.2.1 Task States

A task can exist in one of the following states:

Running When a task is actually executing it is said to be in the Running
state. It is currently utilizing the processor.

Ready Ready tasks are those that are able to execute (they are not blocked
or suspended) but are not currently executing because a different task of
equal or higher priority is already in the Running state.

Blocked A task is said to be in the Blocked state if it is currently waiting
for either a temporal or external event. For example, if a task calls
vTaskDelay() it will block (be placed into the Blocked state) until the
delay period has expired - a temporal event. Tasks can also block waiting
for queue and semaphore events. Tasks in the Blocked state always have
a ‘timeout’ period, after which the task will be unblocked. Blocked tasks
are not available for scheduling.

Suspended Tasks in the Suspended state are also not available for schedu-
ling. Tasks will only enter or exit the suspended state when explicitly
commanded to do so through the vTaskSuspend() and xTaskResume()

API calls respectively. A ‘timeout’ period cannot be specified.

2.2.2 Task Priorities

Each task is assigned a priority from 0 to (configMAX PRIORITIES - 1). con-

figMAX PRIORITIES is defined within FreeRTOSConfig.h and can be set on an
application by application basis. The higher the value given to configMAX -

PRIORITIES the more RAM the FreeRTOS kernel will consume.
Low priority numbers denote low priority tasks, with the default idle priority

defined by tskIDLE PRIORITY as being zero.
The scheduler will ensure that a task in the ready or running state will

always be given processor time in preference to tasks of a lower priority that
are also in the ready state. In other words, the task given processing time will
always be the highest priority task that is able to run.



Tasks and Coroutines 14

2.2.3 Implementing a Task

A task should have the following structure:

void vATaskFunction(void *pvParameters)

{

for (;;)

{

-- Task application code here. --

}

}

The type pdTASK CODE is defined as a function that returns void and takes a
void pointer as it’s only parameter. All functions that implement a task should
be of this type. The parameter can be used to pass information of any type
into the task - this is demonstrated by several of the standard demo application
tasks.

Task functions should never return so are typically implemented as a con-
tinuous loop. Again, see the RTOS demo application for numerous examples.

Tasks are created by calling xTaskCreate() and deleted by calling vTask-

Delete().

2.2.4 Task Creation Macros

Task functions can optionally be defined using the portTASK FUNCTION and
portTASK FUNCTION PROTOmacros. These macro are provided to allow compiler
specific syntax to be added to the function definition and prototype respectively.
Their use is not required unless specifically stated in documentation for the port
being used (currently only the PIC18 fedC port). The prototype for the function
shown above can be written as:

void vATaskFunction(void *pvParameters);

Or,

portTASK_FUNCTION_PROTO(vATaskFunction, pvParameters);

Likewise the function above could equally be written as:

portTASK_FUNCTION(vATaskFunction, pvParameters)

{

for (;;)

{

-- Task application code here. --

}

}



Tasks and Coroutines 15

2.2.5 The Idle Task

The idle task is created automatically when the scheduler is started.
The idle task is responsible for freeing memory allocated by the RTOS to

tasks that have since been deleted. It is therefore important in applications that
make use of the vTaskDelete() function to ensure the idle task is not starved
of processing time. The activity visualization utility can be used to check the
micro-controller time allocated to the idle task.

The idle task has no other active functions so can legitimately be starved of
micro-controller time under all other conditions. It is possible for application
tasks to share the idle task priority. (tskIDLE PRIORITY).

2.2.6 The Idle Task Hook

An idle task hook is a function that is called during each cycle of the idle task.
If you want application functionality to run at the idle priority then there are
two options:

1. Implement the functionality in an idle task hook. There must always be
at least one task that is ready to run. It is therefore imperative that the
hook function does not call any API functions that might cause the task
to block (vTaskDelay() for example. It is permissible for coroutines to
block within the hook function).

2. Create an idle priority task to implement the functionality. This is a more
flexible solution but has a higher RAM usage overhead.

See the Embedded software application design section for more information on
using an idle hook.

To create an idle hook:

1. Set configUSE IDLE HOOK to 1 within FreeRTOSConfig.h.

2. Define a function that has the following prototype:

void vApplicationIdleHook(void);

A common use for an idle hook is to simply put the processor into a power
saving mode.

1. To flash an LED The following code defines a very simple coroutine that
does nothing but periodically flashes an LED.

void vFlashCoRoutine(xCoRoutineHandle

xHandle,

unsigned portBASE_TYPE uxIndex)

{



Tasks and Coroutines 16

// Coroutines must start with a call to crSTART().

crSTART(xHandle);

for (;;)

{

// Delay for a fixed period.

crDELAY(xHandle, 10);

// Flash an LED.

vParTestToggleLED(0);

}

// Coroutines must end with a call to crEND().

crEND();

}

Thats it!

2. Scheduling the coroutine Coroutines are scheduled by repeated calls to
vCoRoutineSchedule(). The best place to do this is from within the idle
task by writing an idle task hook. First ensure that configUSE IDLE HOOK

is set to 1 within FreeRTOSConfig.h. Then write the idle task hook as:

void vApplicationIdleHook(void)

{

vCoRoutineSchedule(void);

}

Alternatively, if the idle task is not performing any other function it would
be more efficient to call vCoRoutineSchedule() from within a loop as:

void vApplicationIdleHook(void)

{

for (;;)

{

vCoRoutineSchedule(void);

}

}

3. Create the coroutine and start the scheduler The coroutine can be
created within main().

#include "task.h" #include "croutine.h"

#define PRIORITY_0 0

void main(void)

{

// In this case the index is not used and is passed



Tasks and Coroutines 17

// in as 0.

xCoRoutineCreate(vFlashCoRoutine, PRIORITY_0, 0);

// NOTE: Tasks can also be created here!

// Start the scheduler.

vTaskStartScheduler();

}

4. Extending the example: Using the index parameter Now assume that we
want to create 8 such coroutines from the same function. Each coroutine
will flash a different LED at a different rate. The index parameter can
be used to distinguish between the coroutines from within the coroutine
function itself.

This time we are going to create 8 coroutines and pass in a different index
to each.

#include "task.h"

#include "croutine.h"

#define PRIORITY_0 0

#define NUM_COROUTINES 8

void main(void)

{

int i;

for (i = 0; i < NUM_COROUTINES; i++)

{

// This time i is passed in as the index.

xCoRoutineCreate(vFlashCoRoutine, PRIORITY_0, i);

}

// NOTE: Tasks can also be created here!

// Start the scheduler.

vTaskStartScheduler();

}

The coroutine function is also extended so each uses a different LED and
flash rate.

const int

iFlashRates[NUM_COROUTINES] = {10, 20, 30, 40, 50, 60, 70, 80};

const int iLEDToFlash[NUM_COROUTINES] = {0, 1, 2, 3, 4, 5, 6, 7}

void vFlashCoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

// Coroutines must start with a call to crSTART().

crSTART(xHandle);

for (;;)

{



Tasks and Coroutines 18

// Delay for a fixed period. uxIndex is used to index into

// the iFlashRates. As each coroutine was created with

// a different index value each will delay for a different

// period.

crDELAY(xHandle, iFlashRate[uxIndex]);

// Flash an LED. Again uxIndex is used as an array index,

// this time to locate the LED that should be toggled.

vParTestToggleLED(iLEDToFlash[uxIndex]);

}

// Coroutines must end with a call to crEND().

crEND();

}

2.2.7 Demo Application Examples

Two files are included in the download that demonstrate using coroutines with
queues:

1. crflash.c This is functionally equivalent to the standard demo file fla-
sh.c but uses coroutines instead of tasks. In addition, and just for demon-
stration purposes, instead of directly toggling an LED from within a corou-
tine (as per the quick example above) the number of the LED that should
be toggled is passed on a queue to a higher priority coroutine.

2. crhook.c Demonstrates passing data from a interrupt to a coroutine. A
tick hook function is used as the data source.

The PC and ARM Cortex-M3 demo applications are already pre-configured
to use these sample coroutine files and can be used as a reference. All the
other demo applications are configured to use tasks only, but can be easily
converted to demonstrate coroutines by following the procedure below. This
replaces the functionality implemented within flash.c with that implemented
with crflash.c:

1. In FreeRTOSConfig.h set configUSE CO ROUTINES and configUSE IDLE-

HOOK to 1.

2. In the IDE project or project makefile (depending on the demo project
being used):

(a) Replace the reference to file FreeRTOS/Demo/Common/Minimal/fla-
sh.c with FreeRTOS/Demo/Common/Minimal/crflash.c.

(b) Add the file FreeRTOS/Source/croutine.c to the build.

3. In main.c:

(a) Include the header file croutine.h which contains the coroutine ma-
cros and function prototypes.



Tasks and Coroutines 19

(b) Replace the inclusion of flash.h with crflash.h.

(c) Remove the call to the function that creates the flash tasks vStart-
LEDFlashTasks() ....

(d) ... and replace it with the function that creates the flash coroutines
vStartFlashCoRoutines(n), where n is the number of coroutines
that should be created. Each coroutine flashes a different LED at a
different rate.

(e) Add an idle hook function that schedules the coroutines as:

void vApplicationIdleHook(void)

{

vCoRoutineSchedule(void);

}

If main() already contains an idle hook then simply add a call to
vCoRoutineSchedule() to the existing hook function.

4. Replacing the flash tasks with the flash coroutines means there are at
least two less stacks that need allocating and less heap space can there-
fore be set aside for use by the scheduler. If your project has insuffi-
cient RAM to include croutine.c in the build then simply reduce the
definition of portTOTAL HEAP SPACE by (2 * portMINIMAL STACK SIZE)

within FreeRTOSConfig.h.

2.3 RTOS Kernel Utilities

2.3.1 Queue Implementation

Items are placed in a queue by copy - not by reference. It is therefore preferable,
when queuing large items, to only queue a pointer to the item. RTOS demo
application files blockq.c and pollq.c demonstrate queue usage. The queue
implementation used by the RTOS is also available for application code. Tasks
and coroutines can block on a queue to wait for either data to become available
on the queue, or space to become available to write to the queue.

2.3.2 Semaphore Implementation

Binary semaphore functionality is provided by a set of macros. The macros
use the queue implementation as this provides everything necessary with no
extra code or testing overhead. The macros can easily be extended to provide
counting semaphores if required. The RTOS demo application file semtest.c

demonstrates semaphore usage. Also see the RTOS API documentation.



Tasks and Coroutines 20

2.3.3 Tick Hook Function

A tick hook function is a function that executes during each RTOS tick interrupt.
It can be used to optionally execute application code during each tick ISR.
To use a tick hook function configUSE TICK HOOK must be set to 1 within
FreeRTOSConfig.h. The prototype for the tick hook function is:

void vApplicationTickHook(void);

vApplicationTickHook() executes from within an ISR so must be short
and never make a blocking API call. See the demo application file crhook.c for
an example of how to use a tick hook. It is also possible to include an idle task
hook.

2.4 Trace Utility

The trace visualization utility allows the RTOS activity to be examined.
It records the sequence in which tasks are given micro-controller processing

time.
To use the utility the macro configUSE TRACE FACILITY must be defined as

1 within FreeRTOSConfig.h when the application is compiled. See the config-
uration section in the RTOS API documentation for more information.

The trace is started by calling vTaskStartTrace() and ended by calling
ulTaskEndTrace(). It will end automatically if it’s buffer becomes full.

The completed trace buffer can be stored to disk for offline examination. The
DOS/Windows utility tracecon.exe converts the stored buffer to a tab delimited
text file. This can then be opened and examined in a spread sheet application.

Below is a 10 millisecond example output collected from the AMD 186 demo
application. The x axis shows the passing of time, and the y axis the number
of the task that is running.

Each task is automatically allocated a number when it is created. The idle
task is always number 0. vTaskList() can be used to obtain the number allo-
cated to each task, along with some other useful information. The information
returned by vTaskList() during the demo application is shown below, where:

• Name - is the name given to the task when it was created. Note that the
demo application creates more than one instance of some tasks.

• State - shows the state of a task. This can be either ‘B’locked, ‘R’eady,
‘S’uspended or ‘D’eleted.

• Priority - is the priority given to the task when it was created.

• Stack - shows the high water mark of the task stack. This is the minimum
amount of free stack that has been available during the lifetime of the
task.



Tasks and Coroutines 21

• Num - is the number automatically allocated to the task.

Note: In it’s current implementation, the time resolution of the trace is equal
to the tick rate. Context switches can occur more frequently than the system
tick (if a task blocks for example). When this occurs the trace will show that
a context switch has occurred and will accurately shows the context switch
sequencing.

However, the timing of context switches that occur between system ticks
cannot accurately be recorded. The ports could easily be modified to provide a
higher resolution time stamp by making use of a free running timer.



Chapter 3

Application Programming
Interfaces of FreeRTOS

3.1 General Information

• Only those API functions specifically designated for use from within an
ISR should be used from within an ISR.

• Tasks and coroutines use different API functions to access queues. A
queue cannot be used to communicate between a task and a coroutine or
visa versa.

• Intertask communication can be achieved using both the full featured API
functions and the light weight API functions (those with “FromISR” in
their name). Use of the light weight functions requires special considera-
tion, as described under the heading “Performance tips and tricks - using
the light weight API”.

3.1.1 Task API

A task may call any API function listed in the menu frame on the left other
than those under the coroutine specific section.

3.1.2 Coroutine API

In addition to the API functions listed under the coroutine specific section, a
coroutine may use the following API calls.

• taskYIELD() - will yield the task in which the coroutines are running.

• taskENTER CRITICAL().

• taskEXIT CRITICAL().

22



APIs of FreeRTOS 23

• vTaskStartScheduler() - this is still used to start the scheduler even if
the application only includes coroutines and no tasks.

• vTaskSuspendAll() - can still be used to lock the scheduler.

• xTaskResumeAll()

• xTaskGetTickCount()

• uxTaskGetNumberOfTasks()

3.2 Configuration Customization

A number of configurable parameters exist that allow the FreeRTOS kernel
to be tailored to your particular application. These items are located in a file
called FreeRTOSConfig.h.

Each demo application included in the FreeRTOS source code download
has its own FreeRTOSConfig.h file. Here is a typical example, followed by an
explanation of each parameter:

#ifndef FREERTOS_CONFIG_H

#define FREERTOS_CONFIG_H

/*

Here is a good place to include header files that are required

across your application.

*/

#include "something.h"

#define configUSE_PREEMPTION 1

#define configUSE_IDLE_HOOK 0

#define configUSE_TICK_HOOK 0

#define configCPU_CLOCK_HZ 58982400

#define configTICK_RATE_HZ 250

#define configMAX_PRIORITIES 5

#define configMINIMAL_STACK_SIZE 128

#define configTOTAL_HEAP_SIZE 10240

#define configMAX_TASK_NAME_LEN 16

#define configUSE_TRACE_FACILITY 0

#define configUSE_16_BIT_TICKS 0

#define configIDLE_SHOULD_YIELD 1

#define configUSE_MUTEXES 0

#define INCLUDE_vTaskPrioritySet 1

#define INCLUDE_uxTaskPriorityGet 1

#define INCLUDE_vTaskDelete 1

#define INCLUDE_vTaskCleanUpResources 0

#define INCLUDE_vTaskSuspend 1

#define INCLUDE_vResumeFromISR 1



APIs of FreeRTOS 24

#define INCLUDE_vTaskDelayUntil 1

#define INCLUDE_vTaskDelay 1

#define INCLUDE_xTaskGetSchedulerState 1

#define INCLUDE_xTaskGetCurrentTaskHandle 1

#define configUSE_CO_ROUTINES 0

#define configMAX_CO_ROUTINE_PRIORITIES 1

#define configKERNEL_INTERRUPT_PRIORITY [dependent of processor]

#endif /* FREERTOS_CONFIG_H */

3.2.1 ‘config’ Parameters

3.2.1.1 configUSE PREEMPTION

Set to 1 to use the preemptive kernel, or 0 to use the cooperative kernel.

3.2.1.2 configUSE IDLE HOOK

Set to 1 if you wish to use an idle hook, or 0 to omit an idle hook.

3.2.1.3 configUSE TICK HOOK

Set to 1 if you wish to use an tick hook, or 0 to omit an tick hook.

3.2.1.4 configCPU CLOCK HZ

Enter the frequency in Hz at which the internal processor core will be executing.
This value is required in order to correctly configure timer peripherals.

3.2.1.5 configTICK RATE HZ

The frequency of the RTOS tick interrupt.
The tick interrupt is used to measure time. Therefore a higher tick frequency

means time can be measured to a higher resolution. However, a high tick fre-
quency also means that the kernel will use more CPU time so be less efficient.
The RTOS demo applications all use a tick rate of 1000Hz. This is used to test
the kernel and is higher than would normally be required.

More than one task can share the same priority. The kernel will share
processor time between tasks of the same priority by switching between the
tasks during each RTOS tick. A high tick rate frequency will therefore also
have the effect of reducing the ‘time slice’ given to each task.



APIs of FreeRTOS 25

3.2.1.6 configMAX PRIORITIES

The number of priorities available to the application tasks. Any number of
tasks can share the same priority. Co-routines are prioritised separately - see
configMAX CO ROUTINE PRIORITIES.

Each available priority consumes RAM within the kernel so this value should
not be set any higher than actually required by your application.

3.2.1.7 configMINIMAL STACK SIZE

The size of the stack used by the idle task. Generally this should not be re-
duced from the value set in the FreeRTOSConfig.h file provided with the demo
application for the port you are using.

3.2.1.8 configTOTAL HEAP SIZE

The total amount of RAM available to the kernel. This value will only be
used if your application makes use of one of the sample memory allocation
schemes provided in the FreeRTOS source code download. See the memory
configuration section for further details.

3.2.1.9 configMAX TASK NAME LEN

The maximum permissible length of the descriptive name given to a task when
the task is created. The length is specified in the number of characters including
the NULL termination byte.

3.2.1.10 configUSE TRACE FACILITY

Set to 1 if you wish the trace visualisation functionality to be available, or 0 if
the trace functionality is not going to be used. If you use the trace functionality
a trace buffer must also be provided.

3.2.1.11 configUSE 16 BIT TICKS

Time is measured in ‘ticks’ - which is the number of times the tick interrupt
has executed since the kernel was started. The tick count is held in a variable
of type portTickType.

Defining configUSE 16 BIT TICKS as 1 causes portTickType to be defined
(typedef’ed) as an unsigned 16 bit type. Defining configUSE 16 BIT TICKS as
0 causes portT.

Using a 16 bit type will greatly improve performance on 8 and 16 bit ar-
chitectures, but limits the maximum specifiable time period to 65535 ‘ticks’.
Therefore, assuming a tick frequency of 250Hz, the maximum time a task can
delay or block when a 16bit counter is used is 262 seconds, compared to 17179869
seconds when using a 32bit counter.



APIs of FreeRTOS 26

Figure 3.1: The Execution Pattern of Four Tasks at the Idle Priority

3.2.1.12 configIDLE SHOULD YIELD

This parameter controls the behaviour of tasks at the idle priority. It only has
an effect if:

1. The preemptive scheduler is being used.

2. The users application creates tasks that run at the idle priority.

Tasks that share the same priority will time slice. Assuming none of the tasks
get preempted, it might be assumed that each task of at a given priority will
be allocated an equal amount of processing time - and if the shared priority is
above the idle priority then this is indeed the case.

When tasks share the idle priority the behavior can be slightly different.
When configIDLE SHOULD YIELD is set to 1 the idle task will yield immediately
should any other task at the idle priority be ready to run. This ensures the
minimum amount of time is spent in the idle task when application tasks are
available for scheduling. This behavior can however have undesirable effects
(depending on the needs of your application) as depicted below:

Figure 3.1 shows the execution pattern of four tasks at the idle priority.
Tasks A, B and C are application tasks. Task I is the idle task. A context
switch occurs with regular period at times T0, T1, . . . , T6. When the idle task
yields task A starts to execute - but the idle task has already taken up some
of the current time slice. This results in task I and task A effectively sharing a
time slice. The application tasks B and C therefore get more processing time
than the application task A.

This situation can be avoided by:

• If appropriate, using an idle hook in place of separate tasks at the idle
priority.

• Creating all application tasks at a priority greater than the idle priority.

• Setting configIDLE SHOULD YIELD to 0.

Setting configIDLE SHOULD YIELD prevents the idle task from yielding process-
ing time until the end of its time slice. This ensure all tasks at the idle priority
are allocated an equal amount of processing time - but at the cost of a greater
proportion of the total processing time being allocated to the idle task.



APIs of FreeRTOS 27

3.2.1.13 configUSE USE MUTEXES

Set to 1 to include mutex functionality in the build, or 0 to omit mutex function-
ality from the build. Readers should familiarise themselves with the differences
between mutexes and binary semaphores in relation to the FreeRTOS.org func-
tionality.

3.2.1.14 configUSE CO ROUTINES

Set to 1 to include coroutine functionality in the build, or 0 to omit corou-
tine functionality from the build. To include coroutines croutine.c must be
included in the project.

3.2.1.15 configMAX CO ROUTINE PRIORITIES

The number of priorities available to the application coroutines. Any number
of coroutines can share the same priority. Tasks are prioritised separately - see
configMAX PRIORITIES.

3.2.1.16 configKERNEL INTERRUPT PRIORITY

Currently only in Cortex-M3/IAR, PIC24 and dsPIC ports. Other ports will
get upgraded shortly.

This sets the interrupt priority used by the kernel. The kernel should use a
low interrupt priority, allowing higher priority interrupts to be unaffected by the
kernel entering critical sections. Instead of critical sections globally disabling
interrupts, they only disable interrupts that are below the kernel interrupt pri-
ority.

This permits very flexible interrupt handling:

• At the kernel priority level interrupt handling ‘tasks’ can be written and
prioritised as per any other task in the system. These are tasks that are
woken by an interrupt. The interrupt service routine (ISR) itself should
be written to be as short as it possibly can be - it just grabs the data
then wakes the high priority handler task. The ISR then returns directly
into the woken handler task - so interrupt processing is contiguous in time
just as if it were all done in the ISR itself. The benefit of this is that all
interrupts remain enabled while the handler task executes.

• ISR’s running above the kernel priority are never masked out by the kernel
itself, so their responsiveness is not effected by the kernel functionality.
However, such ISR’s cannot use the FreeRTOS API functions.

To utilize this scheme your application design must adhere to the following rule:
Any interrupt that uses the FreeRTOS.org API must be set to the same

priority as the kernel (as configured by the configKERNEL INTERRUPT PRIORI-

TY macro).



APIs of FreeRTOS 28

3.2.2 INCLUDE Parameters

The macros starting ‘INCLUDE’ allow those components of the real time kernel
not utilized by your application to be excluded from your build. This ensures the
RTOS does not use any more ROM or RAM than necessary for your particular
embedded application.

Each macro takes the form ...

INCLUDE_FunctionName ...

where FunctionName indicates the API function (or set of functions) that
can optionally be excluded. To include the API function set the macro to 1, to
exclude the function set the macro to 0. For example, to include the vTaskDe-
lete() API function use:

#define INCLUDE_vTaskDelete 1

To exclude vTaskDelete() from your build use:

#define INCLUDE_vTaskDelete 0

3.3 Memory Management

The RTOS kernel has to allocate RAM each time a task, queue or semaphore
is created. The malloc() and free() functions can sometimes be used for this
purpose, but ...

1. they are not always available on embedded systems,

2. take up valuable code space,

3. are not thread safe, and

4. are not deterministic (the amount of time taken to execute the function
will differ from call to call)

... so more often than not an alternative scheme is required.
One embedded/real time system can have very different RAM and timing

requirements to another - so a single RAM allocation algorithm will only ever
be appropriate for a subset of applications.

To get around this problem the memory allocation API is included in the
RTOS portable layer - where an application specific implementation appro-
priate for the real time system being developed can be provided. When the
real time kernel requires RAM, instead of calling malloc() it makes a call to
pvPortMalloc(). When RAM is being freed, instead of calling free() the real
time kernel makes a call to vPortFree().



APIs of FreeRTOS 29

3.3.1 Schemes Included in the Source Code Download

Three sample RAM allocation schemes are included in the FreeRTOS source
code download (V2.5.0 onwards). These are used by the various demo applica-
tions as appropriate. The following subsections describe the available schemes,
when they should be used, and highlight the demo applications that demonstrate
their use.

Each scheme is contained in a separate source file (heap 1.c, heap 2.c and
heap 3.c respectively) which can be located in the Source/Portable/MemMang
directory. Other schemes can be added if required.

3.3.1.1 Scheme 1 - heap 1.c

This is the simplest scheme of all. It does not permit memory to be freed once
it has been allocated, but despite this is suitable for a surprisingly large number
of applications.

The algorithm simply subdivides a single array into smaller blocks as re-
quests for RAM are made. The total size of the array is set by the definition
configTOTAL HEAP SIZE - which is defined in FreeRTOSConfig.h.

This scheme:

• Can be used if your application never deletes a task or queue (no calls to
vTaskDelete() or vQueueDelete() are ever made).

• Is always deterministic (always takes the same amount of time to return
a block).

• Is used by the PIC, AVR and 8051 demo applications - as these do not
dynamically create or delete tasks after vTaskStartScheduler() has been
called.

heap 1.c is suitable for a lot of small real time systems provided that all tasks
and queues are created before the kernel is started.

3.3.1.2 Scheme 2 - heap 2.c

This scheme uses a best fit algorithm and, unlike scheme 1, allows previously
allocated blocks to be freed. It does not however combine adjacent free blocks
into a single large block.

Again the total amount of available RAM is set by the definition config-

TOTAL HEAP SIZE - which is defined in FreeRTOSConfig.h.
This scheme:

• Can be used even when the application repeatedly calls vTaskCreate()-
/vTaskDelete() or vQueueCreate()/vQueueDelete() (causing multiple
calls to pvPortMalloc() and vPortFree()).

• Should not be used if the memory being allocated and freed is of a random
size - this would only be the case if tasks being deleted each had a different
stack depth, or queues being deleted were of different lengths.



APIs of FreeRTOS 30

• Could possible result in memory fragmentation problems should your ap-
plication create blocks of queues and tasks in an unpredictable order. This
would be unlikely for nearly all applications but should be kept in mind.

• Is not deterministic - but is also not particularly inefficient.

• Is used by the ARM7, and Flashlite demo applications - as these dy-
namically create and delete tasks.

heap 2.c is suitable for most small real time systems that have to dynamically
create tasks.

3.3.1.3 Scheme 3 - heap 3.c

This is just a wrapper for the standard malloc() and free() functions. It
makes them thread safe.

This scheme:

• Requires the linker to setup a heap, and the compiler library to provide
malloc() and free() implementations.

• Is not deterministic.

• Will probably considerably increase the kernel code size.

• Is used by the PC (x86 single board computer) demo application.

3.4 Task Management

3.4.1 Task Management

3.4.1.1 xTaskHandle

Type by which tasks are referenced. For example, a call to xTaskCreate returns
(via a pointer parameter) an xTaskHandle variable that can then be used as a
parameter to vTaskDelete to delete the task.

3.4.1.2 xTaskCreate

Prototype

portBASE_TYPE xTaskCreate(pdTASK_CODE pvTaskCode,

const portCHAR * const pcName,

unsigned portSHORT usStackDepth,

void *pvParameters,

unsigned portBASE_TYPE uxPriority,

xTaskHandle *pvCreatedTask);



APIs of FreeRTOS 31

Semantics

Create a new task and add it to the list of tasks that are ready to run.

Parameters

pvTaskCode Pointer to the task entry function. Tasks must be implemented to
never return (i.e. continuous loop).

pcName A descriptive name for the task. This is mainly used to facilitate de-
bugging. Max length defined by configMAX TASK NAME LEN.

usStackDepth The size of the task stack specified as the number of variables
the stack can hold - not the number of bytes. For example, if the stack
is 16 bits wide and usStackDepth is defined as 100, 200 bytes will be
allocated for stack storage. The stack depth multiplied by the stack width
must not exceed the maximum value that can be contained in a variable
of type size t.

pvParameters Pointer that will be used as the parameter for the task being
created.

uxPriority The priority at which the task should run.

pvCreatedTask Used to pass back a handle by which the created task can be
referenced.

Returns

pdPASS if the task was successfully created and added to a ready list, otherwise
an error code defined in the file projdefs.h

Example Usage

// Task to be created.

void vTaskCode(void * pvParameters)

{

for (;;)

{

// Task code goes here.

}

}

// Function that creates a task.

void vOtherFunction(void)

{

unsigned char ucParameterToPass;

xTaskHandle xHandle;

// Create the task, storing the handle.

xTaskCreate(vTaskCode,



APIs of FreeRTOS 32

"NAME",

STACK_SIZE,

&ucParameterToPass,

tskIDLE_PRIORITY,

&xHandle);

// Use the handle to delete the task.

vTaskDelete(xHandle);

}

3.4.1.3 vTaskDelete

Prototype

void vTaskDelete(xTaskHandle pxTask);

INCLUDE vTaskDelete must be defined as 1 for this function to be available.
See the configuration section for more information.

Semantics

Remove a task from the RTOS real time kernels management. The task being
deleted will be removed from all ready, blocked, suspended and event lists.

NOTE: The idle task is responsible for freeing the kernel allocated memory
from tasks that have been deleted. It is therefore important that the idle task
is not starved of microcontroller processing time if your application makes any
calls to vTaskDelete(). Memory allocated by the task code is not automatically
freed, and should be freed before the task is deleted.

See the demo application file death.c for sample code that utilises vTask-
Delete().

Parameters

pxTask The handle of the task to be deleted. Passing NULL will cause the
calling task to be deleted.

Example Usage

void vOtherFunction(void)

{

xTaskHandle xHandle;

// Create the task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// Use the handle to delete the task.

vTaskDelete(xHandle);

}



APIs of FreeRTOS 33

3.4.2 Task Control

3.4.2.1 vTaskDelay

Prototype

void vTaskDelay(portTickType xTicksToDelay);

INCLUDE vTaskDelay must be defined as 1 for this function to be available.
See the configuration section for more information.

Semantics

Delay a task for a given number of ticks. The actual time that the task remains
blocked depends on the tick rate. The constant portTICK RATE MS can be
used to calculate real time from the tick rate - with the resolution of one tick
period.

Parameters

xTicksToDelay The amount of time, in tick periods, that the calling task should
block.

Example Usage

// Perform an action every 10 ticks.

// NOTE:

// This is for demonstration only and would be better achieved

// using vTaskDelayUntil().

void vTaskFunction(void * pvParameters)

{

portTickType xDelay,

xNextTime;

// Calc the time at which we want to perform the action

// next.

xNextTime = xTaskGetTickCount() + (portTickType) 10;

for (;;)

{

xDelay = xNextTime - xTaskGetTickCount();

xNextTime += (portTickType) 10;

// Guard against overflow

if (xDelay <= (portTickType) 10)

{

vTaskDelay(xDelay);

}

// Perform action here.



APIs of FreeRTOS 34

}

}

3.4.2.2 vTaskDelayUntil

Prototype

void vTaskDelayUntil(portTickType *pxPreviousWakeTime,

portTickType xTimeIncrement);

INCLUDE vTaskDelayUntilmust be defined as 1 for this function to be avail-
able. See the configuration section for more information.

Semantics

Delay a task until a specified time. This function can be used by cyclical tasks
to ensure a constant execution frequency.

This function differs from vTaskDelay() in one important aspect: vTask-

Delay() specifies a time at which the task wishes to unblock relative to the
time at which vTaskDelay() is called, whereas vTaskDelayUntil() specifies
an absolute time at which the task wishes to unblock.

vTaskDelay() will cause a task to block for the specified number of ticks
from the time vTaskDelay() is called. It is therefore difficult to use vTask-

Delay() by itself to generate a fixed execution frequency as the time between
a task unblocking following a call to vTaskDelay() and that task next calling
vTaskDelay() may not be fixed [the task may take a different path though the
code between calls, or may get interrupted or preempted a different number of
times each time it executes].

Whereas vTaskDelay() specifies a wake time relative to the time at which
the function is called, vTaskDelayUntil() specifies the absolute (exact) time
at which it wishes to unblock.

It should be noted that vTaskDelayUntil() will return immediately (with-
out blocking) if it is used to specify a wake time that is already in the past.
Therefore a task using vTaskDelayUntil() to execute periodically will have to
re-calculate its required wake time if the periodic execution is halted for any
reason (for example, the task is temporarily placed into the Suspended state)
causing the task to miss one or more periodic executions. This can be detected
by checking the variable passed by reference as the pxPreviousWakeTime pa-
rameter against the current tick count. This is however not necessary under
most usage scenarios.

The constant configTICK RATE MS can be used to calculate real time from
the tick rate - with the resolution of one tick period.



APIs of FreeRTOS 35

Parameters

pxPreviousWakeTime Pointer to a variable that holds the time at which the
task was last unblocked. The variable must be initialised with the current
time prior to its first use (see the example below). Following this the
variable is automatically updated within vTaskDelayUntil().

xTimeIncrement The cycle time period. The task will be unblocked at time
(*pxPreviousWakeTime + xTimeIncrement). Calling vTaskDelayUntil

with the same xTimeIncrement parameter value will cause the task to
execute with a fixed interval period.

Example Usage

// Perform an action every 10 ticks.

void vTaskFunction(void * pvParameters)

{

portTickType xLastWakeTime;

const portTickType xFrequency = 10;

// Initialise the xLastWakeTime variable with the current time.

xLastWakeTime = xTaskGetTickCount();

for (;;)

{

// Wait for the next cycle.

vTaskDelayUntil(&xLastWakeTime, xFrequency);

// Perform action here.

}

}

3.4.2.3 uxTaskPriorityGet

Prototype

unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHandle pxTask);

INCLUDE vTaskPriorityGet must be defined as 1 for this function to be
available. See the configuration section for more information.

Semantics

Obtain the priority of any task.

Parameters

pxTask Handle of the task to be queried. Passing a NULL handle results in the
priority of the calling task being returned.



APIs of FreeRTOS 36

Returns

The priority of pxTask.

Example Usage

void vAFunction(void)

{

xTaskHandle xHandle;

// Create a task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// ...

// Use the handle to obtain the priority of the created task.

// It was created with tskIDLE_PRIORITY, but may have changed

// it itself.

if (uxTaskPriorityGet(xHandle) != tskIDLE_PRIORITY)

{

// The task has changed it’s priority.

}

// ...

// Is our priority higher than the created task?

if (uxTaskPriorityGet(xHandle) < uxTaskPriorityGet(NULL))

{

// Our priority (obtained using NULL handle) is higher.

}

}

3.4.2.4 vTaskPrioritySet

Prototype

void vTaskPrioritySet(xTaskHandle pxTask,

unsigned portBASE_TYPE uxNewPriority);

INCLUDE vTaskPrioritySet must be defined as 1 for this function to be
available. See the configuration section for more information.

Semantics

Set the priority of any task. A context switch will occur before the function
returns if the priority being set is higher than the currently executing task.

Parameters

pxTask Handle to the task for which the priority is being set. Passing a NULL
handle results in the priority of the calling task being set.

uxNewPriority The priority to which the task will be set.



APIs of FreeRTOS 37

Example Usage

void vAFunction(void)

{

xTaskHandle xHandle;

// Create a task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// ...

// Use the handle to raise the priority of the created task.

vTaskPrioritySet(xHandle, tskIDLE_PRIORITY + 1);

// ...

// Use a NULL handle to raise our priority to the same value.

vTaskPrioritySet(NULL, tskIDLE_PRIORITY + 1);

}

3.4.2.5 vTaskSuspend

Prototype

void vTaskSuspend(xTaskHandle pxTaskToSuspend);

INCLUDE vTaskSuspendmust be defined as 1 for this function to be available.
See the configuration section for more information.

Semantics

Suspend any task. When suspended a task will never get any microcontroller
processing time, no matter what its priority. Calls to vTaskSuspend are not
accumulative - i.e. calling vTaskSuspend() twice on the same task still only
requires one call to vTaskResume() to ready the suspended task.

Parameters

pxTaskToSuspend Handle to the task being suspended. Passing a NULL handle
will cause the calling task to be suspended.

Example Usage

void vAFunction(void)

{

xTaskHandle xHandle;

// Create a task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// ...

// Use the handle to suspend the created task.

vTaskSuspend(xHandle);

// ...



APIs of FreeRTOS 38

// The created task will not run during this period, unless

// another task calls vTaskResume(xHandle).

//...

// Suspend ourselves.

vTaskSuspend(NULL);

// We cannot get here unless another task calls vTaskResume

// with our handle as the parameter.

}

3.4.2.6 vTaskResume

Prototype

void vTaskResume(xTaskHandle pxTaskToResume);

INCLUDE vTaskSuspendmust be defined as 1 for this function to be available.
See the configuration section for more information.

Semantics

Resumes a suspended task. A task that has been suspended by one of more
calls to vTaskSuspend() will be made available for running again by a single
call to vTaskResume().

Parameters

pxTaskToResume Handle to the task being readied.

Example Usage

void vAFunction(void)

{

xTaskHandle xHandle;

// Create a task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// ...

// Use the handle to suspend the created task.

vTaskSuspend(xHandle);

// ...

// The created task will not run during this period, unless

// another task calls vTaskResume(xHandle).

//...

// Resume the suspended task ourselves.

vTaskResume(xHandle);

// The created task will once again get microcontroller processing

// time in accordance with it priority within the system.

}



APIs of FreeRTOS 39

3.4.2.7 vTaskResumeFromISR

Prototype

portBASE_TYPE vTaskResumeFromISR(xTaskHandle pxTaskToResume);

INCLUDE vTaskSuspend and INCLUDE xTaskResumeFromISRmust be defined
as 1 for this function to be available. See the configuration section for more
information.

Semantics

A function to resume a suspended task that can be called from within an ISR.
A task that has been suspended by one of more calls to vTaskSuspend() will

be made available for running again by a single call to xTaskResumeFromISR().
vTaskResumeFromISR() should not be used to synchronize a task with an

interrupt if there is a chance that the interrupt could arrive prior to the task be-
ing suspended - as this can lead to interrupts being missed. Use of a semaphore
as a synchronization mechanism would avoid this eventuality.

Parameters

pxTaskToResume Handle to the task being readied.

Returns

pdTRUE if resuming the task should result in a context switch, otherwise pdFAL-
SE. This is used by the ISR to determine if a context switch may be required
following the ISR.

Example Usage

xTaskHandle xHandle; void vAFunction(void)

{

// Create a task, storing the handle.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

// ... Rest of code.

}

void vTaskCode(void *pvParameters)

{

// The task being suspended and resumed.

for (;;)

{

// ... Perform some function here.

// The task suspends itself.

vTaskSuspend(NULL);

// The task is now suspended, so will not reach here



APIs of FreeRTOS 40

// until the ISR resumes it.

}

}

void vAnExampleISR(void)

{

portBASE_TYPE

xYieldRequired;

// Resume the suspended task.

xYieldRequired = xTaskResumeFromISR(xHandle);

if (xYieldRequired == pdTRUE)

{

// We should switch context so the ISR returns to a different task.

// NOTE: How this is done depends on the port you are using. Check

// the documentation and examples for your port.

portYIELD_FROM_ISR();

}

}

3.4.3 Kernel Control

3.4.3.1 taskYIELD

Macro for forcing a context switch.

3.4.3.2 taskENTER CRITICAL

Macro to mark the start of a critical code region. Preemptive context switches
cannot occur when in a critical region.

NOTE: This may alter the stack (depending on the portable implementation)
so must be used with care!

3.4.3.3 taskEXIT CRITICAL

Macro to mark the end of a critical code region. Preemptive context switches
cannot occur when in a critical region.

NOTE: This may alter the stack (depending on the portable implementation)
so must be used with care!

3.4.3.4 taskDISABLE INTERRUPTS

Macro to disable all maskable interrupts.

3.4.3.5 taskENABLE INTERRUPTS

Macro to enable microcontroller interrupts.



APIs of FreeRTOS 41

3.4.3.6 vTaskStartScheduler

Prototype

void vTaskStartScheduler(void);

Semantics

Starts the real time kernel tick processing. After calling the kernel has control
over which tasks are executed and when.

The idle task is created automatically when vTaskStartScheduler() is
called.

If vTaskStartScheduler() is successful the function will not return until an
executing task calls vTaskEndScheduler(). The function might fail and return
immediately if there is insufficient RAM available for the idle task to be created.

See the demo application file main.c for an example of creating tasks and
starting the kernel.

Example Usage

void vAFunction(void)

{

// Create at least one task before starting the kernel.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);

// Start the real time kernel with preemption.

vTaskStartScheduler();

// Will not get here unless a task calls vTaskEndScheduler()

}

3.4.3.7 vTaskEndScheduler

Prototype

void vTaskEndScheduler(void);

Semantics

Stops the real time kernel tick. All created tasks will be automatically deleted
and multitasking (either preemptive or cooperative) will stop. Execution then
resumes from the point where vTaskStartScheduler() was called, as if vTask-
StartScheduler() had just returned.

See the demo application file main.c in the demo/PC directory for an ex-
ample that uses vTaskEndScheduler().



APIs of FreeRTOS 42

vTaskEndScheduler() requires an exit function to be defined within the
portable layer (see vPortEndScheduler() in port.c for the PC port). This
performs hardware specific operations such as stopping the kernel tick.

vTaskEndScheduler() will cause all of the resources allocated by the kernel
to be freed - but will not free resources allocated by application tasks.

Example Usage

void vTaskCode(void * pvParameters)

{

for (;;)

{

// Task code goes here.

// At some point we want to end the real time kernel processing

// so call ...

vTaskEndScheduler();

}

}

void vAFunction(void)

{

// Create at least one task before starting the kernel.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);

// Start the real time kernel with preemption.

vTaskStartScheduler();

// Will only get here when the vTaskCode() task has called

// vTaskEndScheduler(). When we get here we are back to single task

// execution.

}

3.4.3.8 vTaskSuspendAll

Prototype

void vTaskSuspendAll(void);

Semantics

Suspends all real time kernel activity while keeping interrupts (including the
kernel tick) enabled.

After calling vTaskSuspendAll() the calling task will continue to execute
without risk of being swapped out until a call to xTaskResumeAll() has been
made.



APIs of FreeRTOS 43

Example Usage

void vTask1(void * pvParameters)

{

for (;;)

{

// Task code goes here.

// ...

// At some point the task wants to perform a long operation during

// which it does not want to get swapped out. It cannot use

// taskENTER_CRITICAL()/taskEXIT_CRITICAL() as the length of the

// operation may cause interrupts to be missed - including the

// ticks.

// Prevent the real time kernel swapping out the task.

vTaskSuspendAll();

// Perform the operation here. There is no need to use critical

// sections as we have all the microcontroller processing time.

// During this time interrupts will still operate and the kernel

// tick count will be maintained.

// ...

// The operation is complete. Restart the kernel.

xTaskResumeAll();

}

}

3.4.3.9 xTaskResumeAll

Prototype

portBASE_TYPE xTaskResumeAll(void);

Semantics

Resumes real time kernel activity following a call to vTaskSuspendAll().
After a call to xTaskSuspendAll() the kernel will take control of which task

is executing at any time.

Returns

If resuming the scheduler caused a context switch then pdTRUE is returned,
otherwise pdFALSE is returned.

Example Usage

void vTask1(void * pvParameters)



APIs of FreeRTOS 44

{

for (;;)

{

// Task code goes here.

// ...

// At some point the task wants to perform a long operation during

// which it does not want to get swapped out. It cannot use

// taskENTER_CRITICAL()/taskEXIT_CRITICAL() as the length of the

// operation may cause interrupts to be missed - including the

// ticks.

// Prevent the real time kernel swapping out the task.

xTaskSuspendAll();

// Perform the operation here. There is no need to use critical

// sections as we have all the microcontroller processing time.

// During this time interrupts will still operate and the real

// time kernel tick count will be maintained.

// ...

// The operation is complete. Restart the kernel. We want to force

// a context switch - but there is no point if resuming

// the scheduler caused a context switch already.

if (!xTaskResumeAll()) {taskYIELD();}

}

}

3.4.4 Task Utilities

3.4.4.1 xTaskGetCurrentTaskHandle

Prototype

xTaskHandle xTaskGetCurrentTaskHandle(void);

INCLUDE xTaskGetCurrentTaskHandle must be set to 1 for this function to
be available.

Returns

The handle of the currently running (calling) task.

3.4.4.2 xTaskGetTickCount

Prototype

volatile portTickType xTaskGetTickCount(void);

INCLUDE xTaskGetSchedulerState must be set to 1 for this function to be
available.



APIs of FreeRTOS 45

Returns

The count of ticks since vTaskStartScheduler was called.

3.4.4.3 xTaskGetSchedulerState

Prototype

portBASE_TYPE xTaskGetSchedulerState(void);

Returns

One of the following constants (defined within task.h): taskSCHEDULER NOT-

STARTED, taskSCHEDULER RUNNING, taskSCHEDULER SUSPENDED.

3.4.4.4 uxTaskGetNumberOfTasks

Prototype

unsigned portBASE_TYPE uxTaskGetNumberOfTasks(void);

Returns

The number of tasks that the real time kernel is currently managing. This
includes all ready, blocked and suspended tasks. A task that has been deleted
but not yet freed by the idle task will also be included in the count.

3.4.4.5 vTaskList

Prototype

void vTaskList(portCHAR *pcWriteBuffer);

configUSE TRACE FACILITY, INCLUDE vTaskDelete and INCLUDE vTaskSu-

spend must all be defined as 1 for this function to be available. See the config-
uration section for more information.

NOTE: This function will disable interrupts for its duration. It is not in-
tended for normal application runtime use but as a debug aid. Lists all the
current tasks, along with their current state and stack usage high water mark.
Tasks are reported as blocked (‘B’), ready (‘R’), deleted (‘D’) or suspended (‘S’).



APIs of FreeRTOS 46

Parameters

pcWriteBuffer A buffer into which the above mentioned details will be written,
in ascii form. This buffer is assumed to be large enough to contain the
generated report. Approximately 40 bytes per task should be sufficient.

3.4.4.6 vTaskStartTrace

Prototype

void vTaskStartTrace(portCHAR * pcBuffer,

unsigned portLONG ulBufferSize);

Semantics

Starts a real time kernel activity trace. The trace logs the identity of which
task is running when. The trace file is stored in binary format. A separate DOS
utility called convtrce.exe is used to convert this into a tab delimited text file
which can be viewed and plotted in a spread sheet.

Parameters

pcBuffer The buffer into which the trace will be written.

ulBufferSize The size of pcBuffer in bytes.

The trace will continue until either the buffer in full, or ulTaskEndTrace() is
called.

3.4.4.7 ulTaskEndTrace

Prototype

unsigned portLONG ulTaskEndTrace(void);

Semantics

Stops a kernel activity trace. See vTaskStartTrace().

Returns

The number of bytes that have been written into the trace buffer.



APIs of FreeRTOS 47

3.4.5 Queue Management

3.4.5.1 uxQueueMessagesWaiting

Prototype

unsigned portBASE_TYPEvuxQueueMessagesWaiting(xQueueHandle xQueue);

Semantics

Return the number of messages stored in a queue.

Parameters

xQueue A handle to the queue being queried.

Returns

The number of messages available in the queue.

3.4.5.2 vQueueDelete

Prototype

void vQueueDelete(xQueueHandle xQueue);

Semantics

Delete a queue - freeing all the memory allocated for storing of items placed on
the queue.

Parameters

xQueue A handle to the queue to be deleted.

3.4.5.3 xQueueCreate

Prototype

xQueueHandle xQueueCreate(unsigned portBASE_TYPE uxQueueLength,

unsigned portBASE_TYPE uxItemSize);



APIs of FreeRTOS 48

Semantics

Creates a new queue instance. This allocates the storage required by the new
queue and returns a handle for the queue.

Parameters

uxQueueLength The maximum number of items that the queue can contain.

uxItemSize The number of bytes each item in the queue will require. Items
are queued by copy, not by reference, so this is the number of bytes that
will be copied for each posted item. Each item on the queue must be the
same size.

Returns

If the queue is successfully create then a handle to the newly created queue is
returned. If the queue cannot be created then 0 is returned.

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];

};

void vATask(void *pvParameters)

{

xQueueHandle xQueue1, xQueue2;

// Create a queue capable of containing 10 unsigned long values.

xQueue1 = xQueueCreate(10, sizeof(unsigned portLONG));

if (xQueue1 == 0)

{

// Queue was not created and must not be used.

}

// Create a queue capable of containing 10 pointers

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

if (xQueue2 == 0)

{

// Queue was not created and must not be used.

}

// ... Rest of task code.

}



APIs of FreeRTOS 49

3.4.5.4 xQueueSend

Prototype

portBASE_TYPE xQueueSend(xQueueHandle xQueue,

const void * pvItemToQueue,

portTickType xTicksToWait);

This is a macro that calls xQueueGenericSend(). It is included for back-
ward compatibility with versions of FreeRTOS.org that did not include the
xQueueSendToFront() and xQueueSendToBack() macros. It is equivalent to
xQueueSendToBack().

Semantics

Post an item on a queue. The item is queued by copy, not by reference. This
function must not be called from an interrupt service routine. See xQueueSend-
FromISR() for an alternative which may be used in an ISR.

This function is part of the fully featured intertask communications API. See
Design concepts and performance optimisation for advanced options and other
information.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTicksToWait The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The
call will return immediately if this is set to 0. The time is defined in tick
periods so the constant portTICK RATE MS should be used to convert to
real time if this is required.

If INCLUDE vTaskSuspend is set to ‘1’ then specifying the block time as
portMAX DELAY will cause the task to block indefinitely (without a time-
out).

Returns

pdTRUE if the item was successfully posted, otherwise errQUEUE FULL.



APIs of FreeRTOS 50

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];

} xMessage;

unsigned portLONG ulVar = 10UL;

void vATask(void *pvParameters)

{

xQueueHandle xQueue1, xQueue2;

struct AMessage *pxMessage;

// Create a queue capable of containing 10 unsigned long values.

xQueue1 = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if (xQueue1 != 0)

{

// Send an unsigned long. Wait for 10 ticks for space to become

// available if necessary.

if (xQueueSend(xQueue1,

(void *) &ulVar,

(portTickType) 10) != pdPASS)

{

// Failed to post the message, even after 10 ticks.

}

}

if (xQueue2 != 0)

{

// Send a pointer to a struct AMessage object. Don’t block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSend(xQueue2, (void *) &pxMessage, (portTickType) 0);

}

// ... Rest of task code.

}

3.4.5.5 xQueueSendToBack

Only available from FreeRTOS V4.5.0 onwards.



APIs of FreeRTOS 51

Prototype

portBASE_TYPE xQueueSendToBack(xQueueHandle xQueue,

const void * pvItemToQueue,

portTickType xTicksToWait);

This is a macro that calls xQueueGenericSend(). It is equivalent to xQue-

ueSend().

Semantics

Post an item to the back of a queue. The item is queued by copy, not by
reference. This function must not be called from an interrupt service routine.

See xQueueSendToBackFromISR() for an alternative which may be used in
an ISR. This function is part of the fully featured intertask communications
API. See Design concepts and performance optimisation for advanced options
and other information.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTicksToWait The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The
call will return immediately if this is set to 0. The time is defined in tick
periods so the constant portTICK RATE MS should be used to convert to
real time if this is required.

If INCLUDE vTaskSuspend is set to ‘1’ then specifying the block time as
portMAX DELAY will cause the task to block indefinitely (without a time-
out).

Returns

pdTRUE if the item was successfully posted, otherwise errQUEUE FULL.

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];



APIs of FreeRTOS 52

} xMessage;

unsigned portLONG ulVar = 10UL;

void vATask(void *pvParameters)

{

xQueueHandle xQueue1, xQueue2;

struct AMessage *pxMessage;

// Create a queue capable of containing 10 unsigned long values.

xQueue1 = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if (xQueue1 != 0)

{

// Send an unsigned long. Wait for 10 ticks for space to become

// available if necessary.

if (xQueueSendToBack(xQueue1,

(void *) &ulVar,

(portTickType) 10) != pdPASS)

{

// Failed to post the message, even after 10 ticks.

}

}

if (xQueue2 != 0)

{

// Send a pointer to a struct AMessage object. Don’t block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSendToBack(xQueue2, (void *) &pxMessage, (portTickType) 0);

}

// ... Rest of task code.

}

3.4.5.6 xQueueSendToFront

Only available from FreeRTOS V4.5.0 onwards.

Prototype

portBASE_TYPE xQueueSendToToFront(xQueueHandle xQueue,

const void * pvItemToQueue,

portTickType xTicksToWait);

This is a macro that calls xQueueGenericSend().



APIs of FreeRTOS 53

Semantics

Post an item to the front of a queue. The item is queued by copy, not by
reference. This function must not be called from an interrupt service routine.

See xQueueSendToFrontFromISR() for an alternative which may be used in
an ISR. This function is part of the fully featured intertask communications
API. See Design concepts and performance optimisation for advanced options
and other information.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTicksToWait The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The
call will return immediately if this is set to 0. The time is defined in tick
periods so the constant portTICK RATE MS should be used to convert to
real time if this is required.

If INCLUDE vTaskSuspend is set to ‘1’ then specifying the block time as
portMAX DELAY will cause the task to block indefinitely (without a time-
out).

Returns

pdTRUE if the item was successfully posted, otherwise errQUEUE FULL.

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];

} xMessage;

unsigned portLONG ulVar = 10UL;

void vATask(void *pvParameters)

{

xQueueHandle xQueue1, xQueue2;

struct AMessage *pxMessage;

// Create a queue capable of containing 10 unsigned long values.

xQueue1 = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers



APIs of FreeRTOS 54

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if (xQueue1 != 0)

{

// Send an unsigned long. Wait for 10 ticks for space to become

// available if necessary.

if (xQueueSendToFront(xQueue1,

(void *) &ulVar,

(portTickType) 10) != pdPASS)

{

// Failed to post the message, even after 10 ticks.

}

}

if (xQueue2 != 0)

{

// Send a pointer to a struct AMessage object. Don’t block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSendToFront(xQueue2, (void *) &pxMessage, (portTickType) 0);

}

// ... Rest of task code.

}

3.4.5.7 xQueueReceive

Prototype

portBASE_TYPE xQueueReceive(xQueueHandle xQueue,

void *pvBuffer,

portTickType xTicksToWait);

This is a macro that calls the xQueueGenericReceive() function.

Semantics

Receive an item from a queue. The item is received by copy so a buffer of
adequate size must be provided. The number of bytes copied into the buffer
was defined when the queue was created.

This function must not be used in an interrupt service routine. See xQueue-
ReceiveFromISR for an alternative that can. This function is part of the fully
featured intertask communications API. See Design concepts and performance
optimisation for advanced options and other information.



APIs of FreeRTOS 55

Parameters

pxQueue The handle to the queue from which the item is to be received.

pvBuffer Pointer to the buffer into which the received item will be copied.

xTicksToWait The maximum amount of time the task should block waiting for
an item to receive should the queue be empty at the time of the call. The
time is defined in tick periods so the constant portTICK RATE MS should
be used to convert to real time if this is required.

If INCLUDE vTaskSuspend is set to ‘1’ then specifying the block time as
portMAX DELAY will cause the task to block indefinitely (without a time-
out).

Returns

pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];

} xMessage;

xQueueHandle xQueue;

// Task to create a queue and post a value.

void vATask(void *pvParameters)

{

struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue = xQueueCreate(10, sizeof(struct AMessage *));

if (xQueue == 0)

{

// Failed to create the queue.

}

// ...

// Send a pointer to a struct AMessage object. Don’t block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSend(xQueue, (void *) &pxMessage, (portTickType) 0);

// ... Rest of task code.

}

// Task to receive from the queue.



APIs of FreeRTOS 56

void vADifferentTask(void *pvParameters)

{

struct AMessage *pxRxedMessage;

if (xQueue != 0)

{

// Receive a message on the created queue.

// Block for 10 ticks if a

// message is not immediately available.

if (xQueueReceive(xQueue, &(pxRxedMessage), (portTickType) 10))

{

// pcRxedMessage now points to the struct

// AMessage variable posted

// by vATask.

}

}

// ... Rest of task code.

}

3.4.5.8 xQueuePeek

Only available from FreeRTOS V4.5.0 onwards.

Prototype

portBASE_TYPE xQueuePeek(xQueueHandle xQueue,

void *pvBuffer,

portTickType xTicksToWait);

This is a macro that calls the xQueueGenericReceive() function.

Semantics

Receive an item from a queue without removing the item from the queue. The
item is received by copy so a buffer of adequate size must be provided. The
number of bytes copied into the buffer was defined when the queue was created.

Successfully received items remain on the queue so will be returned again
by the next call, or a call to xQueueReceive().

This macro must not be used in an interrupt service routine.

Parameters

xQueue The handle to the queue from which the item is to be received.

pvBuffer Pointer to the buffer into which the received item will be copied. This
must be at least large enough to hold the size of the queue item defined
when the queue was created.



APIs of FreeRTOS 57

xTicksToWait The maximum amount of time the task should block waiting for
an item to receive should the queue be empty at the time of the call. The
time is defined in tick periods so the constant portTICK RATE MS should be
used to convert to real time if this is required. If INCLUDE vTaskSuspend

is set to ‘1’ then specifying the block time as portMAX DELAY will cause
the task to block indefinitely (without a timeout).

Returns

pdTRUE if an item was successfully received (peeked) from the queue, otherwise
pdFALSE.

Example Usage

struct AMessage

{

portCHAR ucMessageID;

portCHAR ucData[20];

} xMessage;

xQueueHandle xQueue;

// Task to create a queue and post a value.

void vATask(void *pvParameters)

{

struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers

// to AMessage structures.

// These should be passed by pointer as they contain a lot of data.

xQueue = xQueueCreate(10, sizeof(struct AMessage *));

if (xQueue == 0)

{

// Failed to create the queue.

}

// ...

// Send a pointer to a struct AMessage object. Don’t block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSend(xQueue, (void *) &pxMessage, (portTickType) 0);

// ... Rest of task code.

}

// Task to peek the data from the queue.

void vADifferentTask(void *pvParameters)

{ struct AMessage *pxRxedMessage;

if (xQueue != 0)



APIs of FreeRTOS 58

{

// Peek a message on the created queue. Block for 10 ticks if a

// message is not immediately available.

if (xQueuePeek(xQueue, &(pxRxedMessage), (portTickType) 10))

{

// pcRxedMessage now points to the struct AMessage variable

// posted by vATask, but the item still remains on the queue.

}

}

// ... Rest of task code.

}

3.4.5.9 xQueueSendFromISR

Prototype

portBASE_TYPE xQueueSendFromISR(xQueueHandle pxQueue,

const void *pvItemToQueue,

portBASE_TYPE xTaskPreviouslyWoken);

This is a macro that calls xQueueGenericSendFromISR(). It is included for
backward compatibility with versions of FreeRTOS.org that did not include the
xQueueSendToBackFromISR() and xQueueSendToFrontFromISR() macros.

Semantics

Post an item on a queue. It is safe to use this function from within an interrupt
service routine.

Items are queued by copy not reference so it is preferable to only queue small
items, especially when called from an ISR. In most cases it would be preferable
to store a pointer to the item being queued.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTaskPreviouslyWoken This is included so an ISR can post onto the same
queue multiple times from a single interrupt. The first call should always
pass inpdFALSE. Subsequent calls should pass in the value returned from
the previous call. See the file serial.c in the PC port for a good example
of this mechanism.



APIs of FreeRTOS 59

Returns

pdTRUE if a task was woken by posting onto the queue. This is used by the ISR
to determine if a context switch may be required following the ISR.

Example Usage - For Buffered IO

Where the ISR can obtain more than one value per call:

void vBufferISR(void)

{

portCHAR cIn;

portBASE_TYPE xTaskWokenByPost;

// We have not woken a task at the start of the ISR.

xTaskWokenByPost = pdFALSE;

// Loop until the buffer is empty.

do

{

// Obtain a byte from the buffer.

cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte. The first time round the loop xTaskWokenByPost

// will be pdFALSE. If the queue send causes a task to wake we do

// not want the task to run until we have finished the ISR, so

// xQueueSendFromISR does not cause a context switch. Also we

// don’t want subsequent posts to wake any other tasks, so we store

// the return value back into xTaskWokenByPost so xQueueSendFromISR

// knows not to wake any task the next iteration of the loop.

xTaskWokenByPost = xQueueSendFromISR(xRxQueue,

&cIn,

xTaskWokenByPost);

} while(portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.

if (xTaskWokenByPost)

{

// We should switch context so the ISR returns to a different task.

// NOTE: How this is done depends on the port you are using. Check

// the documentation and examples for your port.

portYIELD_FROM_ISR();

}

}

3.4.5.10 xQueueSendToBackFromISR

Only available from FreeRTOS V4.5.0 onwards.

Prototype

portBASE_TYPE xQueueSendToBackFromISR(xQueueHandle pxQueue,



APIs of FreeRTOS 60

const void *pvItemToQueue,

portBASE_TYPE xTaskPreviouslyWoken);

This is a macro that calls xQueueGenericSendFromISR().

Semantics

Post an item to the back of a queue. It is safe to use this function from within
an interrupt service routine. Items are queued by copy not reference so it is
preferable to only queue small items, especially when called from an ISR. In
most cases it would be preferable to store a pointer to the item being queued.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTaskPreviouslyWoken This is included so an ISR can post onto the same
queue multiple times from a single interrupt. The first call should always
pass in pdFALSE. Subsequent calls should pass in the value returned from
the previous call. See the file serial.c in the PC port for a good example
of this mechanism.

Returns

pdTRUE if a task was woken by posting onto the queue. This is used by the ISR
to determine if a context switch may be required following the ISR.

Example Usage for Buffered IO

Where the ISR can obtain more than one value per call:

void vBufferISR(void)

{

portCHAR cIn;

portBASE_TYPE xTaskWokenByPost;

// We have not woken a task at the start of the ISR.

xTaskWokenByPost = pdFALSE;

// Loop until the buffer is empty.

do

{

// Obtain a byte from the buffer.

cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte. The first time round the loop xTaskWokenByPost

// will be pdFALSE. If the queue send causes a task to wake we do

// not want the task to run until we have finished the ISR, so



APIs of FreeRTOS 61

// xQueueSendToBackFromISR does not cause a context switch. Also we

// don’t want subsequent posts to wake any other tasks, so we store

// the return value back into xTaskWokenByPost so xQueueSendToBackFromISR

// knows not to wake any task the next iteration of the loop.

xTaskWokenByPost = xQueueSendToBackFromISR(xRxQueue,

&cIn,

xTaskWokenByPost);

} while (portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.

if (xTaskWokenByPost)

{

// We should switch context so the ISR returns to a different task.

// NOTE: How this is done depends on the port you are using. Check

// the documentation and examples for your port.

portYIELD_FROM_ISR();

}

}

3.4.5.11 xQueueSendToFrontFromISR

Only available from FreeRTOS V4.5.0 onwards.

Prototype

portBASE_TYPE xQueueSendToFrontFromISR(xQueueHandle pxQueue,

const void *pvItemToQueue,

portBASE_TYPE xTaskPreviouslyWoken);

This is a macro that calls xQueueGenericSendFromISR().

Semantics

Post an item to the front of a queue. It is safe to use this function from within
an interrupt service routine. Items are queued by copy not reference so it is
preferable to only queue small items, especially when called from an ISR. In
most cases it would be preferable to store a pointer to the item being queued.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvItemToQueue A pointer to the item that is to be placed on the queue. The
size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from pvItemToQueue into the
queue storage area.

xTaskPreviouslyWoken This is included so an ISR can post onto the same
queue multiple times from a single interrupt. The first call should always
pass in pdFALSE. Subsequent calls should pass in the value returned from



APIs of FreeRTOS 62

the previous call. See the file serial.c in the PC port for a good example
of this mechanism.

Returns

pdTRUE if a task was woken by posting onto the queue. This is used by the ISR
to determine if a context switch may be required following the ISR.

Example Usage for Buffered IO

Where the ISR can obtain more than one value per call:

void vBufferISR(void)

{

portCHAR cIn;

portBASE_TYPE xTaskWokenByPost;

// We have not woken a task at the start of the ISR.

xTaskWokenByPost = pdFALSE;

// Loop until the buffer is empty.

do

{

// Obtain a byte from the buffer.

cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte. The first time round the loop xTaskWokenByPost

// will be pdFALSE. If the queue send causes a task to wake we do

// not want the task to run until we have finished the ISR, so

// xQueueSendToFrontFromISR does not cause a context switch. Also we

// don’t want subsequent posts to wake any other tasks, so we store

// the return value back into xTaskWokenByPost so xQueueSendToFrontFromISR

// knows not to wake any task the next iteration of the loop.

xTaskWokenByPost = xQueueSendToFrontFromISR(xRxQueue,

&cIn,

xTaskWokenByPost);

} while (portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.

if (xTaskWokenByPost)

{

// We should switch context so the ISR returns to a different task.

// NOTE: How this is done depends on the port you are using. Check

// the documentation and examples for your port.

portYIELD_FROM_ISR();

}

}

3.4.5.12 xQueueReceiveFromISR

Prototype

portBASE_TYPE xQueueReceiveFromISR(xQueueHandle pxQueue,



APIs of FreeRTOS 63

void *pvBuffer,

portBASE_TYPE *pxTaskWoken);

Semantics

Receive an item from a queue. It is safe to use this function from within an
interrupt service routine.

Parameters

pxQueue The handle to the queue from which the item is to be received.

pvBuffer Pointer to the buffer into which the received item will be copied.

pxTaskWoken A task may be blocked waiting for space to become available
on the queue. If xQueueReceiveFromISR causes such a task to unblock
*pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will remain
unchanged.

Returns

pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

Example Usage

xQueueHandle xQueue;

// Function to create a queue and post some values.

void vAFunction(void *pvParameters)

{

portCHAR cValueToPost;

const portTickType xBlockTime = (portTickType) 0xff;

// Create a queue capable of containing 10 characters.

xQueue = xQueueCreate(10, sizeof(portCHAR));

if (xQueue == 0)

{

// Failed to create the queue.

}

// ...

// Post some characters that will be used within an ISR. If the queue

// is full then this task will block for xBlockTime ticks.

cValueToPost = ’a’; xQueueSend(xQueue, (void *) &cValueToPost, xBlockTime);

cValueToPost = ’b’; xQueueSend(xQueue, (void *) &cValueToPost, xBlockTime);

// ... keep posting characters ... this task may block when the queue

// becomes full.

cValueToPost = ’c’; xQueueSend(xQueue, (void *) &cValueToPost, xBlockTime);

}

// ISR that outputs all the characters received on the queue.

void vISR_Routine(void)



APIs of FreeRTOS 64

{

portBASE_TYPE xTaskWokenByReceive = pdFALSE;

portCHAR cRxedChar;

while (xQueueReceiveFromISR(xQueue,

(void *) &cRxedChar,

&xTaskWokenByReceive))

{

// A character was received. Output the character now.

vOutputCharacter(cRxedChar);

// If removing the character from the queue woke the task that was

// posting onto the queue xTaskWokenByReceive will have been set to

// pdTRUE. No matter how many times this loop iterates only one

// task will be woken.

}

if (xTaskWokenByPost != pdFALSE)

{

// We should switch context so the ISR returns to a different task.

// NOTE: How this is done depends on the port you are using. Check

// the documentation and examples for your port.

taskYIELD();

}

}

3.4.6 Semaphore Management

3.4.6.1 SemaphoreCreateBinary

Prototype

vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore)

Semantics

Macro that creates a semaphore by using the existing queue mechanism. The
queue length is 1 as this is a binary semaphore. The data size is 0 as we don’t
want to actually store any data - we just want to know if the queue is empty or
full.

Binary semaphores and mutexes are very similar but have some subtle dif-
ferences: Mutexes include a priority inheritance mechanism, binary semaphores
do not. This makes binary semaphores the better choice for implementing syn-
chronization (between tasks or between tasks and an interrupt), and mutexes
the better choice for implementing simple mutual exclusion.

A binary semaphore need not be given back once obtained, so task synchro-
nization can be implemented by one task/interrupt continuously ‘giving’ the
semaphore while another continuously ‘takes’ the semaphore. This is demon-
strated by the sample code on the xSemaphoreGiveFromISR() documentation
page.



APIs of FreeRTOS 65

The priority of a task that ‘takes’ a mutex can potentially be raised if another
task of higher priority attempts to obtain the same mutex. The task that owns
the mutex ‘inherits’ the priority of the task attempting to ‘take’ the same mutex.
This means the mutex must always be ‘given’ back - otherwise the higher priority
task will never be able to obtain the mutex, and the lower priority task will never
‘disinherit’ the priority. An example of a mutex being used to implement mutual
exclusion is provided on the xSemaphoreTake() documentation page.

Both mutex and binary semaphores are assigned to variables of type xSema-
phoreHandle and can be used in any API function that takes a parameter of
this type.

Parameters

xSemaphore Handle to the created semaphore. Should be of type xSemaphore-
Handle.

Example Usage

xSemaphoreHandle xSemaphore;
void vATask(void * pvParameters) // Semaphore cannot be used before a

call to vSemaphoreCreateBinary(). // This is a macro so pass the variable in
directly. vSemaphoreCreateBinary(xSemaphore); if (xSemaphore != NULL) //
The semaphore was created successfully. // The semaphore can now be used.

3.4.6.2 xSemaphoreCreateMutex

This only available from FreeRTOS V4.5.0 onwards.

Prototype

xSemaphoreHandle xQueueCreateMutex(void)

Semantics

Macro that creates a mutex semaphore by using the existing queue mechanism.
Mutexes and binary semaphores are very similar but have some subtle dif-

ferences: Mutexes include a priority inheritance mechanism, binary semaphores
do not. This makes binary semaphores the better choice for implementing syn-
chronisation (between tasks or between tasks and an interrupt), and mutexes
the better choice for implementing simple mutual exclusion.

The priority of a task that ‘takes’ a mutex can potentially be raised if another
task of higher priority attempts to obtain the same mutex. The task that owns
the mutex ‘inherits’ the priority of the task attempting to ‘take’ the same mutex.
This means the mutex must always be ‘given’ back - otherwise the higher priority
task will never be able to obtain the mutex, and the lower priority task will never



APIs of FreeRTOS 66

‘disinherit’ the priority. An example of a mutex being used to implement mutual
exclusion is provided on the xSemaphoreTake() documentation page.

A binary semaphore need not be given back once obtained, so task synchro-
nisation can be implemented by one task/interrupt continuously ‘giving’ the
semaphore while another continuously ‘takes’ the semaphore. This is demon-
strated by the sample code on the xSemaphoreGiveFromISR() documentation
page.

Both mutex and binary semaphores are assigned to variables of type xSema-
phoreHandle and can be used in any API function that takes a parameter of
this type.

Parameters

xSemaphore Handle to the created semaphore. Should be of type xSemaphore-
Handle.

Example Usage

xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{

// Mutex semaphores cannot be used before a call to

// vSemaphoreCreateMutex(). The created mutex is returned.

xSemaphore = vSemaphoreCreateBinary();

if (xSemaphore != NULL)

{

// The semaphore was created successfully.

// The semaphore can now be used.

}

}

3.4.6.3 xSemaphoreTake

Prototype

xSemaphoreTake(xSemaphoreHandle xSemaphore, portTickType xBlockTime)

Semantics

Macro to obtain a semaphore.
The semaphore must of been created using vSemaphoreCreateBinary().

This macro must not be called from an ISR. xQueueReceiveFromISR() can be
used to take a semaphore from within an interrupt if required, although this



APIs of FreeRTOS 67

would not be a normal operation. Semaphores use queues as their underlying
mechanism, so functions are to some extent interoperable. This function is part
of the fully featured intertask communications API. See Design concepts and
performance optimization for advanced options and other information.

Parameters

xSemaphore A handle to the semaphore being obtained. This is the handle
returned by vSemaphoreCreateBinary();

xBlockTime The time in ticks to wait for the semaphore to become available.
The macro portTICK RATE MS can be used to convert this to a real time.
A block time of zero can be used to poll the semaphore.

If INCLUDE vTaskSuspend is set to ‘1’ then specifying the block time as
portMAX DELAY will cause the task to block indefinitely (without a time-
out).

Returns

pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired without
the semaphore becoming available.

Example Usage

xSemaphoreHandle xSemaphore = NULL;

// A task that creates a semaphore.

void vATask(void * pvParameters)

{

// Create the semaphore to guard a shared resource. As we are using

// the semaphore for mutual exclusion we create a mutex semaphore

// rather than a binary semaphore.

xSemaphore = xSemaphoreCreateMutex();

}

// A task that uses the semaphore.

void vAnotherTask(void * pvParameters)

{

// ... Do other things.

if (xSemaphore != NULL)

{

// See if we can obtain the semaphore. If the semaphore is not available

// wait 10 ticks to see if it becomes free.

if (xSemaphoreTake(xSemaphore, (portTickType) 10) == pdTRUE)

{

// We were able to obtain the semaphore and can now access the

// shared resource.

// ...

// We have finished accessing the shared resource. Release the

// semaphore.



APIs of FreeRTOS 68

xSemaphoreGive(xSemaphore);

}

else

{

// We could not obtain the semaphore and can therefore not access

// the shared resource safely.

}

}

}

3.4.6.4 xSemaphoreGive

Prototype

xSemaphoreGive(xSemaphoreHandle xSemaphore)

Semantics

Macro to release a semaphore.
The semaphore must of been created using vSemaphoreCreateBinary(),

and obtained using xSemaphoreTake(). This must not be used from an ISR.
See xSemaphoreGiveFromISR() for an alternative which can be used from an
ISR.

This function is part of the fully featured intertask communications API. See
Design concepts and performance optimisation for advanced options and other
information.

Parameters

xSemaphore A handle to the semaphore being released. This is the handle
returned by vSemaphoreCreateBinary();

Returns

pdTRUE if the semaphore was released. pdFALSE if an error occurred.
Semaphores are implemented using queues. An error can occur if there is no

space on the queue to post a message - indicating that the semaphore was not
first obtained correctly.

Example Usage

xSemaphoreHandle xSemaphore = NULL;

void vATask(void * pvParameters)

{

// Create the semaphore to guard a shared resource. As we are using

// the semaphore for mutual exclusion we create a mutex semaphore



APIs of FreeRTOS 69

// rather than a binary semaphore.

xSemaphore = xSemaphoreCreateMutex();

if (xSemaphore != NULL)

{

if (xSemaphoreGive(xSemaphore) != pdTRUE)

{

// We would expect this call to fail because we cannot give

// a semaphore without first "taking" it!

}

// Obtain the semaphore - don’t block if the semaphore is not

// immediately available.

if (xSemaphoreTake(xSemaphore, (portTickType) 0))

{

// We now have the semaphore and can access the shared resource.

// ...

// We have finished accessing the shared resource so can free the

// semaphore.

if (xSemaphoreGive(xSemaphore) != pdTRUE)

{

// We would not expect this call to fail because we must have

// obtained the semaphore to get here.

}

}

}

}

3.4.6.5 xSemaphoreGiveFromISR

Prototype

xSemaphoreGiveFromISR(xSemaphoreHandle xSemaphore,

portBASE_TYPE xTaskPreviouslyWoken)

Semantics

Macro to release a semaphore.
The semaphore must of been created using vSemaphoreCreateBinary(),

and obtained using xSemaphoreTake().
This macro can be used from an ISR.

Parameters

xSemaphore A handle to the semaphore being released. This is the handle
returned by vSemaphoreCreateBinary();

xTaskPreviouslyWoken This is included so an ISR can make multiple calls to
xSemaphoreGiveFromISR() from a single interrupt. The first call should
always pass in pdFALSE. Subsequent calls should pass in the value returned



APIs of FreeRTOS 70

from the previous call. See the file serial.c in the PC port for a good
example of using xSemaphoreGiveFromISR().

Returns

pdTRUE if a task was woken by releasing the semaphore. This is used by the ISR
to determine if a context switch may be required following the ISR.

Example Usage

#define LONG_TIME 0xffff

#define TICKS_TO_WAIT 10

xSemaphoreHandle xSemaphore = NULL;

// Repetitive task.

void vATask(void * pvParameters)

{

// We are using the semaphore for synchronisation to we create a binary

// semaphore rather than a mutex. We must make sure that the interrupt

// does not attempt to use the semaphore before it is created!

xSemaphoreCreateBinary(xSemaphore);

for (;;)

{

// We want this task to run every 10 ticks or a timer. The semaphore

// was created before this task was started

// Block waiting for the semaphore to become available.

if (xSemaphoreTake(xSemaphore, LONG_TIME) == pdTRUE)

{

// It is time to execute.

// ...

// We have finished our task. Return to the top of the loop where

// we will block on the semaphore until it is time to execute

// again.

}

}

}

// Timer ISR

void vTimerISR(void * pvParameters)

{

static unsigned portCHAR ucLocalTickCount = 0;

static portBASE_TYPE xTaskWoken = pdFALSE;

// A timer tick has occurred.

// ... Do other time functions.

// Is it time for vATask() to run?

ucLocalTickCount++;

if (ucLocalTickCount >= TICKS_TO_WAIT)

{

// Unblock the task by releasing the semaphore.

xTaskWoken = xSemaphoreGiveFromISR(xSemaphore, xTaskWoken);



APIs of FreeRTOS 71

// Reset the count so we release the semaphore again in 10 ticks time.

ucLocalTickCount = 0;

}

// If xTaskWoken was set to true you may want to yield (force a switch)

// here.

}

3.4.7 Coroutine Management

3.4.7.1 xCoRoutineCreate

Prototype

portBASE_TYPE xCoRoutineCreate(crCOROUTINE_CODE pxCoRoutineCode,

unsigned portBASE_TYPE uxPriority,

unsigned portBASE_TYPE uxIndex);

Semantics

Create a new coroutine and add it to the list of coroutines that are ready to
run.

Parameters

pxCoRoutineCode Pointer to the coroutine function. Co-routine functions re-
quire special syntax - see the coroutine section of the WEB documentation
for more information.

uxPriority The priority with respect to other coroutines at which the coroutine
will run.

uxIndex Used to distinguish between different coroutines that execute the same
function. See the example below and the coroutine section of the WEB
documentation for further information.

Returns

pdPASS if the coroutine was successfully created and added to a ready list,
otherwise an error code defined with ProjDefs.h.

Example Usage

// Co-routine to be created.

void vFlashCoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{



APIs of FreeRTOS 72

// Variables in coroutines must be declared static

// if they must maintain value across a blocking call.

// This may not be necessary for const variables.

static const char cLedToFlash[2] = {5, 6};

static const portTickType xTimeToDelay[2] = {200, 400};

// Must start every coroutine with a call to crSTART();

crSTART(xHandle);

for (;;)

{

// This coroutine just delays for a fixed period, then toggles

// an LED. Two coroutines are created using this function, so

// the uxIndex parameter is used to tell the coroutine which

// LED to flash and how long to delay. This assumes xQueue has

// already been created.

vParTestToggleLED(cLedToFlash[uxIndex]);

crDELAY(xHandle, uxFlashRates[uxIndex]);

}

// Must end every coroutine with a call to crEND();

crEND();

}

// Function that creates two coroutines.

void vOtherFunction(void)

{

unsigned char ucParameterToPass;

xTaskHandle xHandle;

// Create two coroutines at priority 0. The first is given index 0

// so (from the code above) toggles LED 5 every 200 ticks. The second

// is given index 1 so toggles LED 6 every 400 ticks.

for (uxIndex = 0; uxIndex < 2; uxIndex++)

{

xCoRoutineCreate(vFlashCoRoutine, 0, uxIndex);

}

}

xCoRoutineHandle

Type by which coroutines are referenced. The coroutine handle is automatically
passed into each coroutine function.

3.4.7.2 xCoRoutineCreate

Prototype

portBASE_TYPE xCoRoutineCreate(crCOROUTINE_CODE pxCoRoutineCode,

unsigned portBASE_TYPE uxPriority,

unsigned portBASE_TYPE uxIndex);



APIs of FreeRTOS 73

Semantics

Create a new coroutine and add it to the list of coroutines that are ready to
run.

Parameters

pxCoRoutineCode Pointer to the coroutine function. Co-routine functions re-
quire special syntax - see the coroutine section of the WEB documentation
for more information.

uxPriority The priority with respect to other coroutines at which the coroutine
will run.

uxIndex Used to distinguish between different coroutines that execute the same
function. See the example below and the coroutine section of the WEB
documentation for further information.

Returns

pdPASS if the coroutine was successfully created and added to a ready list,
otherwise an error code defined with ProjDefs.h.

Example Usage

// Co-routine to be created.

void vFlashCoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

// Variables in coroutines must be declared static

// if they must maintain value across a blocking call.

// This may not be necessary for const variables.

static const char cLedToFlash[2] = {5, 6};

static const portTickType xTimeToDelay[2] = {200, 400};

// Must start every coroutine with a call to crSTART();

crSTART(xHandle);

for (;;)

{

// This coroutine just delays for a fixed period, then toggles

// an LED. Two coroutines are created using this function, so

// the uxIndex parameter is used to tell the coroutine which

// LED to flash and how long to delay. This assumes xQueue has

// already been created.

vParTestToggleLED(cLedToFlash[uxIndex]);

crDELAY(xHandle, uxFlashRates[uxIndex]);

}

// Must end every coroutine with a call to crEND();

crEND();

}

// Function that creates two coroutines.



APIs of FreeRTOS 74

void vOtherFunction(void)

{

unsigned char ucParameterToPass;

xTaskHandle xHandle;

// Create two coroutines at priority 0. The first is given index 0

// so (from the code above) toggles LED 5 every 200 ticks. The second

// is given index 1 so toggles LED 6 every 400 ticks.

for (uxIndex = 0; uxIndex < 2; uxIndex++)

{

xCoRoutineCreate(vFlashCoRoutine, 0, uxIndex);

}

}

xCoRoutineHandle

Type by which coroutines are referenced. The coroutine handle is automatically
passed into each coroutine function.

3.4.7.3 crDELAY

Prototype

void crDELAY(xCoRoutineHandle xHandle,

portTickType xTicksToDelay)

Semantics

crDELAY is a macro.
The data types in the prototype above are shown for reference only. Delay

a coroutine for a fixed period of time.
crDELAY can only be called from the coroutine function itself - not from

within a function called by the coroutine function. This is because coroutines
do not maintain their own stack.

Parameters

xHandle The handle of the coroutine to delay. This is the xHandle parameter
of the coroutine function.

xTickToDelay The number of ticks that the coroutine should delay for. The
actual amount of time this equates to is defined by configTICK RATE HZ

(set in FreeRTOSConfig.h). The constant portTICK RATE MS can be used
to convert ticks to milliseconds.



APIs of FreeRTOS 75

Example Usage

// Co-routine to be created.

void vACoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

// Variables in coroutines must be declared static

// if they must maintain value across a blocking call.

// This may not be necessary for const variables.

// We are to delay for 200ms.

static const xTickType xDelayTime = 200 / portTICK_RATE_MS;

// Must start every coroutine with a call to crSTART();

crSTART(xHandle);

for (;;)

{

// Delay for 200ms.

crDELAY(xHandle, xDelayTime);

// Do something here.

}

// Must end every coroutine with a call to crEND();

crEND();

}

3.4.7.4 crQUEUE SEND

Prototype

crQUEUE_SEND(xCoRoutineHandle xHandle,

xQueueHandle pxQueue,

void *pvItemToQueue,

portTickType xTicksToWait,

portBASE_TYPE *pxResult)

Semantics

crQUEUE SEND is a macro. The data types are shown in the prototype above for
reference only.

The macro’s crQUEUE SEND() and crQUEUE RECEIVE() are the coroutine
equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.

crQUEUE SEND and crQUEUE RECEIVE can only be used from a coroutine
whereas xQueueSend() and xQueueReceive() can only be used from tasks.
Note that coroutines can only send data to other coroutines. A coroutine can-
not use a queue to send data to a task or visa versa.



APIs of FreeRTOS 76

crQUEUE SEND can only be called from the coroutine function itself - not from
within a function called by the coroutine function. This is because coroutines
do not maintain their own stack.

See the coroutine section of the WEB documentation for information on
passing data between tasks and coroutines and between ISR’s and coroutines.

Parameters

xHandle The handle of the calling coroutine. This is the xHandle parameter of
the coroutine function.

pxQueue The handle of the queue on which the data will be posted. The han-
dle is obtained as the return value when the queue is created using the
xQueueCreate() API function.

pvItemToQueue A pointer to the data being posted onto the queue. The number
of bytes of each queued item is specified when the queue is created. This
number of bytes is copied from pvItemToQueue into the queue itself.

xTickToWait The number of ticks that the coroutine should block to wait
for space to become available on the queue, should space not be avail-
able immediately. The actual amount of time this equates to is de-
fined by configTICK RATE HZ (set in FreeRTOSConfig.h). The constant
portTICK RATE MS can be used to convert ticks to milliseconds (see exam-
ple below).

pxResult The variable pointed to by pxResult will be set to pdPASS if data
was successfully posted onto the queue, otherwise it will be set to an error
defined within ProjDefs.h.

Example Usage

// Co-routine function that blocks for a fixed period then posts a number onto

// a queue.

static void prvCoRoutineFlashTask(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

// Variables in coroutines must be declared static if they must

// maintain value across a blocking call. static portBASE_TYPE

xNumberToPost = 0;

static portBASE_TYPE xResult;

// Co-routines must begin with a call to crSTART().

crSTART(xHandle);

for (;;)

{

// This assumes the queue has already been created.

crQUEUE_SEND(xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult);

if (xResult != pdPASS)

{



APIs of FreeRTOS 77

// The message was not posted!

}

// Increment the number to be posted onto the queue.

xNumberToPost++;

// Delay for 100 ticks.

crDELAY(xHandle, 100);

}

// Co-routines must end with a call to crEND().

crEND();

}

3.4.7.5 crQUEUE RECEIVE

Prototype

void crQUEUE_RECEIVE(xCoRoutineHandle xHandle,

xQueueHandle pxQueue,

void *pvBuffer,

portTickType xTicksToWait,

portBASE_TYPE *pxResult)

Semantics

crQUEUE RECEIVE is a macro. The data types are shown in the prototype above
for reference only.

The macro’s crQUEUE SEND() and crQUEUE RECEIVE() are the coroutine
equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.

crQUEUE SEND and crQUEUE RECEIVE can only be used from a coroutine
whereas xQueueSend() and xQueueReceive() can only be used from tasks.
Note that coroutines can only send data to other coroutines.

A coroutine cannot use a queue to send data to a task or visa versa. cr-

QUEUE RECEIVE can only be called from the coroutine function itself - not from
within a function called by the coroutine function. This is because coroutines
do not maintain their own stack.

See the coroutine section of the WEB documentation for information on
passing data between tasks and coroutines and between ISR’s and coroutines.

Parameters

xHandle The handle of the calling coroutine. This is the xHandle parameter of
the coroutine function.

pxQueue The handle of the queue from which the data will be received. The
handle is obtained as the return value when the queue is created using the
xQueueCreate() API function.



APIs of FreeRTOS 78

pvBuffer The buffer into which the received item is to be copied. The number
of bytes of each queued item is specified when the queue is created. This
number of bytes is copied into pvBuffer.

xTickToWait The number of ticks that the coroutine should block to wait
for data to become available from the queue, should data not be avail-
able immediately. The actual amount of time this equates to is de-
fined by configTICK RATE HZ (set in FreeRTOSConfig.h). The constant
portTICK RATE MS can be used to convert ticks to milliseconds (see the
crQUEUE SEND example).

pxResult The variable pointed to by pxResult will be set to pdPASS if data
was successfully retrieved from the queue, otherwise it will be set to an
error code as defined within ProjDefs.h.

Example Usage

// A coroutine receives the number of an LED to flash from a queue. It

// blocks on the queue until the number is received.

static void prvCoRoutineFlashWorkTask(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

// Variables in coroutines must be declared static if they must

// maintain value across a blocking call. static portBASE_TYPE xResult;

static unsigned portBASE_TYPE uxLEDToFlash;

// All coroutines must start with a call to crSTART().

crSTART(xHandle);

for (;;)

{

// Wait for data to become available on the queue.

crQUEUE_RECEIVE(xHandle,

xCoRoutineQueue,

&uxLEDToFlash,

portMAX_DELAY,

&xResult);

if (xResult == pdPASS)

{

// We received the LED to flash - flash it!

vParTestToggleLED(uxLEDToFlash);

}

}

crEND();

}



APIs of FreeRTOS 79

3.4.7.6 crQUEUE SEND FROM ISR

Prototype

portBASE_TYPE crQUEUE_SEND_FROM_ISR(xQueueHandle pxQueue,

void *pvItemToQueue,

portBASE_TYPE xCoRoutinePreviouslyWoken)

Semantics

crQUEUE SEND FROM ISR() is a macro. The data types are shown in the proto-
type above for reference only.

The macro’s crQUEUE SEND FROM ISR() and crQUEUE RECEIVE FROM ISR()

are the coroutine equivalent to the xQueueSendFromISR() and xQueueRecei-

veFromISR() functions used by tasks.
crQUEUE SEND FROM ISR() and crQUEUE RECEIVE FROM ISR() can only be

used to pass data between a coroutine and and ISR, whereas xQueueSendFrom-
ISR() and xQueueReceiveFromISR() can only be used to pass data between a
task and and ISR.

crQUEUE SEND FROM ISR can only be called from an ISR to send data to a
queue that is being used from within a coroutine.

See the coroutine section of the WEB documentation for information on
passing data between tasks and coroutines and between ISR’s and coroutines.

Parameters

xQueue The handle to the queue on which the item is to be posted. pvItemTo-
Queue A pointer to the item that is to be placed on the queue. The size
of the items the queue will hold was defined when the queue was created,
so this many bytes will be copied from pvItemToQueue into the queue
storage area.

xCoRoutinePreviouslyWoken This is included so an ISR can post onto the
same queue multiple times from a single interrupt. The first call should
always pass in pdFALSE. Subsequent calls should pass in the value returned
from the previous call.

Returns

pdTRUE if a coroutine was woken by posting onto the queue. This is used by the
ISR to determine if a context switch may be required following the ISR.

Example Usage

// A coroutine that blocks on a queue waiting for characters to be

// received.



APIs of FreeRTOS 80

static void vReceivingCoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{

portCHAR cRxedChar;

portBASE_TYPE xResult;

// All coroutines must start with a call to crSTART().

crSTART(xHandle);

for (;;)

{

// Wait for data to become available on the queue. This assumes the

// queue xCommsRxQueue has already been created!

crQUEUE_RECEIVE(xHandle,

xCommsRxQueue,

&uxLEDToFlash,

portMAX_DELAY,

&xResult);

// Was a character received?

if (xResult == pdPASS)

{

// Process the character here.

}

}

// All coroutines must end with a call to crEND().

crEND();

}

// An ISR that uses a queue to send characters received on a serial port to

// a coroutine.

void vUART_ISR(void)

{

portCHAR cRxedChar;

portBASE_TYPE

xCRWokenByPost = pdFALSE;

// We loop around reading characters until there are none left

// in the UART.

while (UART_RX_REG_NOT_EMPTY())

{

// Obtain the character from the UART.

cRxedChar = UART_RX_REG;

// Post the character onto a queue. xCRWokenByPost will be pdFALSE

// the first time around the loop. If the post causes a coroutine

// to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.

// In this manner we can ensure that if more than one coroutine is

// blocked on the queue only one is woken by this ISR no matter how

// many characters are posted to the queue.

xCRWokenByPost = crQUEUE_SEND_FROM_ISR(xCommsRxQueue,

&cRxedChar,

xCRWokenByPost);

}

}



APIs of FreeRTOS 81

3.4.7.7 crQUEUE RECEIVE FROM ISR

Prototype

portBASE_TYPE crQUEUE_SEND_FROM_ISR(xQueueHandle pxQueue,

void *pvBuffer,

portBASE_TYPE * pxCoRoutineWoken)

Semantics

The macro’s crQUEUE SEND FROM ISR() and crQUEUE RECEIVE FROM ISR() are
the coroutine equivalent to the xQueueSendFromISR() and xQueueReceive-

FromISR() functions used by tasks.
crQUEUE SEND FROM ISR() and crQUEUE RECEIVE FROM ISR() can only be

used to pass data between a coroutine and and ISR, whereas xQueueSendFrom-
ISR() and xQueueReceiveFromISR() can only be used to pass data between a
task and and ISR.

crQUEUE RECEIVE FROM ISR can only be called from an ISR to receive data
from a queue that is being used from within a coroutine (a coroutine posted to
the queue).

See the coroutine section of the WEB documentation for information on
passing data between tasks and coroutines and between ISR’s and coroutines.

Parameters

xQueue The handle to the queue on which the item is to be posted.

pvBuffer A pointer to a buffer into which the received item will be placed.
The size of the items the queue will hold was defined when the queue was
created, so this many bytes will be copied from the queue into pvBuffer.

pxCoRoutineWoken A coroutine may be blocked waiting for space to become
available on the queue. If crQUEUE RECEIVE FROM ISR causes such a corou-
tine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
*pxCoRoutineWoken will remain unchanged

Returns

pdTRUE an item was successfully received from the queue, otherwise pdFALSE.

Example Usage

// A coroutine that posts a character to a queue then blocks for a fixed

// period. The character is incremented each time.

static void vSendingCoRoutine(xCoRoutineHandle xHandle,

unsigned portBASE_TYPE uxIndex)

{



APIs of FreeRTOS 82

// cChar holds its value while this coroutine is blocked and must therefore

// be declared static.

static portCHAR cCharToTx = ’a’;

portBASE_TYPE xResult;

// All coroutines must start with a call to crSTART().

crSTART(xHandle);

for (;;)

{

// Send the next character to the queue.

crQUEUE_SEND(xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult);

if (xResult == pdPASS)

{

// The character was successfully posted to the queue.

}

else

{

// Could not post the character to the queue.

}

// Enable the UART Tx interrupt to cause an interrupt in this

// hypothetical UART. The interrupt will obtain the character

// from the queue and send it.

ENABLE_RX_INTERRUPT();

// Increment to the next character then block for a fixed period.

// cCharToTx will maintain its value across the delay as it is

// declared static.

cCharToTx++;

if (cCharToTx > ’x’)

{

cCharToTx = ’a’;

}

crDELAY(100);

}

// All coroutines must end with a call to crEND().

crEND();

}

// An ISR that uses a queue to receive characters to send on a UART.

void vUART_ISR(void)

{

portCHAR cCharToTx;

portBASE_TYPE

xCRWokenByPost = pdFALSE;

while (UART_TX_REG_EMPTY())

{

// Are there any characters in the queue waiting to be sent?

// xCRWokenByPost will automatically be set to pdTRUE if a coroutine

// is woken by the post - ensuring that only a single coroutine is

// woken no matter how many times we go around this loop.

if (crQUEUE_RECEIVE_FROM_ISR(pxQueue, &cCharToTx, &xCRWokenByPost))

{

SEND_CHARACTER(cCharToTx);

}

}

}



APIs of FreeRTOS 83

3.4.7.8 vCoRoutineSchedule

Prototype

void vCoRoutineSchedule(void);

Semantics

Run a coroutine.
vCoRoutineSchedule() executes the highest priority coroutine that is able

to run. The coroutine will execute until it either blocks, yields or is preempted by
a task. Co-routines execute cooperatively so one coroutine cannot be preempted
by another, but can be preempted by a task.

If an application comprises of both tasks and coroutines then vCoRoutine-

Schedule should be called from the idle task (in an idle task hook).

Example Usage

void vApplicationIdleHook(void)

{

vCoRoutineSchedule(void);

}

Alternatively, if the idle task is not performing any other function it would
be more efficient to call vCoRoutineSchedule() from within a loop as:

void vApplicationIdleHook(void)

{

for (;;)

{

vCoRoutineSchedule(void);

}

}



Chapter 4

FreeRTOS Implementation
and Source Code Analysis

4.1 General Features

FreeRTOS is a free, embedded RTOS has been made available by [Bar07]. This
RTOS claims to be a portable, open source, mini real-time kernel that can be
operated in preemptive or cooperative. Some of the main features of FreeRTOS
are listed below:

• Real-time: FreeRTOS could, in fact, be a hard real-time operating sys-
tem. The assignment of the label “hard real time” depends on the ap-
plication in which FreeRTOS would function and on strong validation
within that context.

• Preemptive or cooperative operation: The scheduler can be preemptive or
cooperative (the mode is decided in a configuration switch). Cooperative
scheduling does not implement a timer based scheduler decision point C
processes pass control to one another by yielding. The scheduler interrupts
at regular frequency simply to increment the tick count.

• Dynamic scheduling: Scheduler decision points occur at regular clock fre-
quency. Asynchronous events (other than the scheduler) also invoke sched-
uler decisions points.

• Scheduling Algorithm: The scheduler algorithm is highest priority first.
Where more than one task exists at the highest priority, tasks are executed
in round robin fashion.

• Inter-Process Communication: Tasks within FreeRTOS can communi-
cate with each other through the use of queuing and synchronization
mechanisms:

84



Source Code Analysis 85

– Queuing: Inter-process communication is achieved via the creation
of queues. Most information exchanged via queues is passed by value
not by reference which should be a consideration for memory con-
strained applications. Queue reads or writes from within interrupt
service routines (ISRs) are non-blocking. Queue reads or writes with
zero timeout are non-blocking. All other queue reads or writes block
with configurable timeouts.

– Synchronization: FreeRTOS allows the creation and use of binary
semaphores. The semaphores themselves are specialized instances
of message queues with queue length of one and data size of zero.
Because of this, taking and giving semaphores are atomic operations
since interrupts are disabled and the scheduler is suspended in order
to obtain a lock on the queue.

• Blocking and Deadlock avoidance: In FreeRTOS, tasks are either non-
blocking or will block with a fixed period of time. Tasks that wake up
at the end of timeout and still cannot get access to a resource must have
made provisions for the fact that the API call to the resource may return
an access failure notification. Timeouts on each block reduce the likelihood
of resource deadlocks.

• Critical Section Processing: Critical section processing is handled by the
disabling of interrupts. Critical sections within a task can be nested and
each task tracks its own nesting count. However, it is possible to yield
from within a critical section (in support of the cooperative scheduling)
because software interrupts (SWI) are non-maskable and yield uses SWI to
switch context. The state of interrupts are restored on each task context
switch by the restoration of the bit in the condition code register (CCR).

• Scheduler Suspension: When exclusive access to the MCU is required with-
out jeopardizing the operation of ISRs, the scheduler can be suspended.
Suspending the scheduler guarantees that the current process will not be
preempted by a scheduling event while at the same time continuing to
service interrupts.

• Memory Allocation: FreeRTOS provides three heap models as part of
the distribution. The simplest model provides for fixed memory allocation
on the creation of each task but no de-allocation or memory reuse (there-
fore tasks cannot be deleted). A more complex heap model allows the
allocation and de-allocation of memory and uses a best-fit algorithm to
locate space in the heap. However, the algorithm does not combine adja-
cent free segments. The most complex heap algorithm provides wrappers
for malloc() and calloc(). A custom heap algorithm can be created to
suit application requirements.

• Priority Inversion: FreeRTOS does not implement any advanced tech-
niques (such as priority inheritance or priority ceilings) to deal with pri-
ority inversion.



Source Code Analysis 86

Figure 4.1: FreeRTOS Source Distribution

4.2 Source Code Distribution and Organization

FreeRTOS is distributed in a code tree as shown in Figure 4.1. FreeRTOS
includes target independent source code in the Source directory. Most of the
functionality of FreeRTOS is provided within the tasks.c, queue.c, list.c,
and coroutines.c files (and associated header files).

FreeRTOS provides a Hardware Abstract Layer (HAL) for various com-
binations of compiler and hardware target. Target-specific functionality for
each compiler/hardware target is provided in the port.c and portmacro.h files
within the HAL. All functions referenced in this document that are start with
port belong to the HAL and are implemented in one of the portable files.

The Demo directory provides sample code for a several demonstration ap-
plications. This directory is organized in the same fashion as the Portable

directory because the demonstrations are written and compiled to operate on
certain hardware targets using various compilers.

4.2.1 Basic Directory Structure

The FreeRTOS download includes source code for every processor port, and
every demo application. Placing all the ports in a single download greatly sim-
plifies distribution, but the number of files may seem daunting. The directory
structure is however very simple, and the FreeRTOS real time kernel is con-



Source Code Analysis 87

tained in just 3 files (4 if coroutines are used).
From the top, the download is split into two sub directories:

FreeRTOS

|

+- Demo Contains the demo application.

|

+- Source Contains the real time kernel source code.

The majority of the real time kernel code is contained in three files that are
common to every processor architecture (four if coroutines are used). These
files, tasks.c, queue.c and list.c, are in the source directory.

Each processor architecture requires a small amount of kernel code specific
to that architecture. The processor specific code is contained in a directory
called Portable, under the Source directory.

The download also contains a demo application for every processor architec-
ture and compiler port. The majority of the demo application code is common to
all ports and is contained in a directory called Common, under the Demo direc-
tory. The remaining sub directories under Demo contain build files for building
the demo for that particular port.

FreeRTOS

|

+- Demo

| |

| +- Common The demo application files that are used by all the ports.

| +- Dir x The demo application build files for port x

| +- Dir y The demo application build files for port y

|

+- Source

|

+- Portable Processor specific code.

The following subsections provide more details of the Demo and Source di-
rectories.

4.2.2 RTOS Source Code Directory List

[the Source directory]

To use FreeRTOS you need to include the real time kernel source files in your
makefile. It is not necessary to modify them or understand their implementa-
tion.

The real time kernel source code consists of three files that are common to
all micro-controller ports (four if coroutines are used), and a single file that
is specific to the port you are using. The common files can be found in the
FreeRTOS/Source directory. The port specific files can be found in subdirecto-
ries contained in the FreeRTOS/Source/Portable directory.

For example:



Source Code Analysis 88

• If using the MSP430 port with the GCC compiler: The MSP430 specific
file (port.c) can be found in the FreeRTOS/Source/Portable/GCC/MSP-
430F449 directory, and all the other sub directories in the FreeRTOS/Sour-
ce/Portable directory relate to other microcontroller ports and can be
ignored.

• If using the PIC18 port with the MPLAB compiler: The PIC18 specific file
(port.c) can be found in the FreeRTOS/Source/Portable/MPLAB/PIC18
directory, and all the other sub directories in the FreeRTOS/Source/Por-
table directory relate to other micro-controller ports and can be ignored.

• And so on for all the ports ... FreeRTOS/Portable/MemMang contains
the sample memory allocators as described in the memory management
section.

4.2.3 Demo Application Source Code Directory List

[the Demo directory]

The Demo directory tree contains a demo application for each port. Most of
the code for the demo application is common to every port. The code that is
common to every port is located in the FreeRTOS/Demo/Common directory. See
the demo application section for more details. Port specific code, including the
demo application project files, can be found in subdirectories contained in the
FreeRTOS/Demo directory.

For example:

• If building the MSP430 GCC demo application: The MSP430 demo appli-
cation makefile can be found in the FreeRTOS/Demo/MSP430 directory.
All the other sub directories contained in the FreeRTOS/Demo directory
(other than the Common directory) relate to demo application’s targeted
at other micro-controllers and can be ignored.

• If building the PIC18 MPLAB demo application: The PIC18 demo ap-
plication project file can be found in the FreeRTOS/Demo/PIC18 MPLAB

directory. All the other sub directories contained in the FreeRTOS/Demo

directory (other than the Common directory) relate to demo application’s
targeted at other micro-controllers and can be ignored.

• And so on for all the ports ...

4.2.4 Creating Your Own Application

When writing your own application it is preferable to use the demo application
makefile (or project file) as a starting point. You can leave all the files included
from the Source directory included in the makefile, and replace the files in-
cluded from the Demo directory with those for your own application. This will
ensure both the RTOS source files included in the makefile and the compiler
switches used in the makefile are both correct.



Source Code Analysis 89

4.2.5 Naming Conventions

The RTOS kernel and demo application source code use the following conven-
tions:

• Variables

– Variables of type char are prefixed c

– Variables of type short are prefixed s

– Variables of type long are prefixed l

– Variables of type float are prefixed f

– Variables of type double are prefixed d

– Enumerated variables are prefixed e

– Other types (e.g. structs) are prefixed x

– Pointers have an additional prefixed p, for example a pointer to a
short will have prefix ps

– Unsigned variables have an additional prefixed u, for example an
unsigned short will have prefix us

• Functions

– File private functions are prefixed with prv

– API functions are prefixed with their return type, as per the conven-
tion defined for variables

– Function names start with the file in which they are defined. For
example vTaskDelete is defined in Task.c

4.2.6 Data Types

Data types are not directly referenced within the RTOS kernel source code.
Instead each port has it’s own set of definitions. For example, the char type
is #defined to portCHAR, the short data type is #defined to portSHORT,
etc. The demo application source code also uses this notation - but this is
not necessary and your application can use whatever notation you prefer. In
addition there are two other types that are defined for each port. These are:

• portTickType: This is a configurable as either an unsigned 16bit type or
an unsigned 32bit type. See the customisation section of the API docu-
mentation for full information.

• portBASE TYPE: This is defined for each port to be the most efficient type
for that particular architecture.

If portBASE TYPE is define to char then particular care must be taken to ensure
signed chars are used for function return values that can be negative to indicate
an error.

The control algorithm is reliant on accurate timing, it is therefore paramount
that these timing requirements are met.



Source Code Analysis 90

4.2.7 Local Operator Interface [Keypad and LCD]

The keypad and LCD can be used by the operator to select, view and modify
system data. The operator interface shall function while the plant is being
controlled.

To ensure no key presses are missed the keypad shall be scanned at least
every 15ms. The LCD shall update within 50ms of a key being pressed.

4.2.8 LED

The LED shall be used to indicate the system status. A flashing green LED
shall indicate that the system is running as expected. A flashing red LED shall
indicate a fault condition.

The correct LED shall flash on and off once ever second. This flash rate
shall be maintained to within 50ms.

4.2.9 RS232 PDA Interface

The PDA RS232 interface shall be capable of viewing and accessing the same
data as the local operator interface, and the same timing constraints apply -
discounting any data transmission times.

4.2.10 TCP/IP Interface

The embedded WEB server shall service HTTP requests within one second.

4.2.11 Application Components

The timing requirements of the hypothetical system can be split into three
categories:

1. Strict timing - the plant control. The control function has a very strict
timing requirement as it must execute every 10ms.

2. Flexible timing - the LED. While the LED outputs have both maximum
and minimum time constraints, there is a large timing band within which
they can function.

3. Deadline only timing - the human interfaces. This includes the keypad,
LCD, RS232 and TCP/IP Ethernet communications.

The human interface functions have a different type of timing requirement
as only a maximum limit is specified. For example, the keypad must be
scanned at least every 10ms, but any rate up to 10ms is acceptable.



Source Code Analysis 91

4.2.12 More Info

The best way to learn about the real time kernel is to use the demo application
and read the API documentation.

A demo application is provided for each microcontroller. If you don’t have
any hardware available then the PC port will execute under Windows, and the
Keil ARM7 port will run entirely in the Keil simulator.

4.2.13 RTOS Demo Introduction

The RTOS source code download includes a demonstration project for each
port. The sample projects are preconfigured to execute on the single board
computer or prototyping board used during the port development. Each should
build directly as downloaded without any warnings or errors.

The demonstration projects are provided as:

1. An aid to learning how to use FreeRTOS - each source file demonstrates
a component of the RTOS.

2. A preconfigured starting point for new applications - to ensure the correct
development tool setup (compiler switches, debugger format, etc) it is
recommended that new applications are created by modifying the existing
demo projects.

The table below lists the files that make up the demo projects along with a brief
indication of the RTOS features demonstrated. The following page describes
each task and coroutine within the demo project in more detail.

Two implementations are provided for the majority files listed below. The
files contained in the Demo/Common/Minimal directory are for more RAM chal-
lenged systems such as the AVR. These files do not contain console IO. The
files contained in the Demo/Common/Full directory are predominantly for the
x86 demo projects and contain console IO. Other than that the functionality of
the two implementations are basically the same. See the Source Code Organi-
zation section for more information on the demo project directory structure.

A few of points to note:

• Not all the Demo/Common files are used in every demonstration project.
How many files are used depends on processor resources.

• The demo projects often use all the available RAM on the target processor.
This means that you cannot add more tasks to the project without first
removing some! This is especially true for the projects configured to run
on the low end 8bit processors.

• In addition to the standard demo projects, two embedded WEB server
projects are included in the download. These provide a more application
orientated example.



Source Code Analysis 92

• Each demo project also contains a file called main.c which contains the
main() function. This function is responsible for creating all the demo
application tasks and then starting the real time kernel.

• The standard demo project files are provided for the purpose of demon-
strating the use of the real time kernel and are not intended to provide an
optimized solution. This is particularly true of comtest.c.

The demo application does not free all it’s resources when it exits, although the
kernel does. This has been done purely to minimize lines of code.

4.2.13.1 Demo Project Files

This page describes the functionality of the files within the standard RTOS
demo projects. The descriptions relate to the files in the Demo/Common/Full
directory. Their equivalents in the Demo/Common/Minimal directory will have
similar functionality but use less RAM and not contain any console IO.

4.2.13.2 blockQ.c

Creates six tasks that operate on three queues as follows:
The first two tasks send and receive an incrementing number to/from a

queue. One task acts as a producer and the other as the consumer. The con-
sumer is a higher priority than the producer and is set to block on queue reads.
The queue only has space for one item - as soon as the producer posts a message
on the queue the consumer will unblock, pre-empt the producer, and remove
the item.

The second two tasks work the other way around. Again the queue used only
has enough space for one item. This time the consumer has a lower priority than
the producer. The producer will try to post on the queue blocking when the
queue is full. When the consumer wakes it will remove the item from the queue,
causing the producer to unblock, pre-empt the consumer, and immediately re-fill
the queue.

The last two tasks use the same queue producer and consumer functions.
This time the queue has enough space for lots of items and the tasks operate
at the same priority. The producer will execute, placing items into the queue.
The consumer will start executing when either the queue becomes full (causing
the producer to block) or a context switch occurs (tasks of the same priority
will time slice).

4.2.13.3 comtest.c

Creates two tasks that operate on an interrupt driven serial port. A loopback
connector should be used so that everything that is transmitted is also received.
The serial port does not use any flow control. On a standard 9 way ‘D’ connector
pins two and three should be connected together. The first task repeatedly sends
a string to a queue, character at a time. The serial port interrupt will empty the



Source Code Analysis 93

queue and transmit the characters. The task blocks for a pseudo random period
before resending the string. The second task blocks on a queue waiting for a
character to be received. Characters received by the serial port interrupt routine
are posted onto the queue - unblocking the task making it ready to execute. If
this is then the highest priority task ready to run it will run immediately - with
a context switch occurring at the end of the interrupt service routine. The task
receiving characters is spawned with a higher priority than the task transmitting
the characters. With the loop back connector in place, one task will transmit a
string and the other will immediately receive it. The receiving task knows the
string it expects to receive so can detect an error. This also creates a third task.
This is used to test semaphore usage from an ISR and does nothing interesting.

4.2.13.4 crflash.c

This demo application file demonstrates the use of queues to pass data between
coroutines and the use of the coroutine index parameter. N ‘fixed delay’ corou-
tines are created that just block for a fixed period then post the number of an
LED onto a queue. Each such coroutine uses its index parameter as an index
into array in order to obtain the block period and LED that is flashed. A single
‘flash’ coroutine is also created that blocks on the same queue, waiting for the
number of the next LED it should flash. Upon receiving a number it simply
toggle the instructed LED then blocks on the queue once more. In this manner
each LED from LED 0 to LED N-1 is caused to flash at a different rate. The
‘fixed delay’ coroutines are created with coroutine priority 0. The flash corou-
tine is created with coroutine priority 1. This means that the queue should
never contain more than a single item. This is because posting to the queue will
unblock the higher priority ‘flash’ coroutine which will only block again when
the queue is empty. An error is indicated if an attempt to post data to the
queue fails - indicating that the queue is already full.

4.2.13.5 crhook.c

This demo file demonstrates how to send data between an ISR and a coroutine.
A tick hook function is used to periodically pass data between the RTOS tick
and a set of ‘hook’ coroutines. hookNUM HOOK CO ROUTINES coroutines are cre-
ated. Each coroutine blocks to wait for a character to be received on a queue
from the tick ISR, checks to ensure the character received was that expected,
then sends the number back to the tick ISR on a different queue. The tick
ISR checks the numbers received back from the ‘hook’ coroutines matches the
number previously sent. If at any time a queue function returns unexpectedly,
or an incorrect value is received either by the tick hook or a coroutine then an
error is latched. This demo relies on each ‘hook’ coroutine to execute between
each hookTICK CALLS BEFORE POST tick interrupts. This and the heavy use of
queues from within an interrupt may result in an error being detected on slower
targets simply due to timing.



Source Code Analysis 94

4.2.13.6 death.c

Create a single persistent task which periodically dynamically creates another
four tasks. The original task is called the creator task, the four tasks it creates
are called suicidal tasks. Two of the created suicidal tasks kill one other suicidal
task before killing themselves - leaving just the original task remaining. The
creator task must be spawned after all of the other demo application tasks as it
keeps a check on the number of tasks under the scheduler control. The number
of tasks it expects to see running should never be greater than the number of
tasks that were in existence when the creator task was spawned, plus one set of
four suicidal tasks. If this number is exceeded an error is flagged.

4.2.13.7 dynamic.c

The first test creates three tasks - two counter tasks (one continuous count and
one limited count) and one controller. A ”count” variable is shared between
all three tasks. The two counter tasks should never be in a ”ready” state at
the same time. The controller task runs at the same priority as the continuous
count task, and at a lower priority than the limited count task. One counter
task loops indefinitely, incrementing the shared count variable on each iteration.
To ensure it has exclusive access to the variable it raises it’s priority above that
of the controller task before each increment, lowering it again to it’s original
priority before starting the next iteration. The other counter task increments
the shared count variable on each iteration of it’s loop until the count has reached
a limit of 0xff - at which point it suspends itself. It will not start a new loop
until the controller task has made it ”ready” again by calling vTaskResume().
This second counter task operates at a higher priority than controller task so
does not need to worry about mutual exclusion of the counter variable. The
controller task is in two sections. The first section controls and monitors the
continuous count task. When this section is operational the limited count task is
suspended. Likewise, the second section controls and monitors the limited count
task. When this section is operational the continuous count task is suspended.
In the first section the controller task first takes a copy of the shared count
variable. To ensure mutual exclusion on the count variable it suspends the
continuous count task, resuming it again when the copy has been taken. The
controller task then sleeps for a fixed period - during which the continuous count
task will execute and increment the shared variable. When the controller task
wakes it checks that the continuous count task has executed by comparing the
copy of the shared variable with its current value. This time, to ensure mutual
exclusion, the scheduler itself is suspended with a call to vTaskSuspendAll().
This is for demonstration purposes only and is not a recommended technique
due to its inefficiency. After a fixed number of iterations the controller task
suspends the continuous count task, and moves on to its second section. At the
start of the second section the shared variable is cleared to zero. The limited
count task is then woken from it’s suspension by a call to vTaskResume().
As this counter task operates at a higher priority than the controller task the



Source Code Analysis 95

controller task should not run again until the shared variable has been counted
up to the limited value causing the counter task to suspend itself. The next
line after vTaskResume() is therefore a check on the shared variable to ensure
everything is as expected. The second test consists of a couple of very simple
tasks that post onto a queue while the scheduler is suspended. This test was
added to test parts of the scheduler not exercised by the first test.

4.2.13.8 flash.c

Creates eight tasks, each of which flash an LED at a different rate. The first LED
flashes every 125ms, the second every 250ms, the third every 375ms, etc. The
LED flash tasks provide instant visual feedback. They show that the scheduler
is still operational. The PC port uses the standard parallel port for outputs,
the Flashlite 186 port uses IO port F.

4.2.13.9 flop.c

Creates eight tasks, each of which loops continuously performing an (emulated)
floating point calculation. All the tasks run at the idle priority and never block
or yield. This causes all eight tasks to time slice with the idle task. Running
at the idle priority means that these tasks will get preempted any time another
task is ready to run or a time slice occurs. More often than not the pre-emption
will occur mid calculation, creating a good test of the schedulers context switch
mechanism - a calculation producing an unexpected result could be a symptom
of a corruption in the context of a task.

4.2.13.10 integer.c

This does the same as flop.c, but uses variables of type long instead of type
double. As with flop.c, the tasks created in this file are a good test of the
scheduler context switch mechanism. The processor has to access 32bit variables
in two or four chunks (depending on the processor). The low priority of these
tasks means there is a high probability that a context switch will occur mid
calculation. See the flop.c documentation for more information.

4.2.13.11 pollQ.c

This is a very simple queue test. See the BlockQ.c documentation for a more
comprehensive version. Creates two tasks that communicate over a single queue.
One task acts as a producer, the other a consumer. The producer loops for three
iteration, posting an incrementing number onto the queue each cycle. It then
delays for a fixed period before doing exactly the same again. The consumer
loops emptying the queue. Each item removed from the queue is checked to
ensure it contains the expected value. When the queue is empty it blocks for a
fixed period, then does the same again. All queue access is performed without
blocking. The consumer completely empties the queue each time it runs so the



Source Code Analysis 96

producer should never find the queue full. An error is flagged if the consumer
obtains an unexpected value or the producer find the queue is full.

4.2.13.12 print.c

Manages a queue of strings that are waiting to be displayed. This is used
to ensure mutual exclusion of console output. A task wishing to display a
message will call vPrintDisplayMessage(), with a pointer to the string as
the parameter. The pointer is posted onto the xPrintQueue queue. The task
spawned in main.c blocks on xPrintQueue. When a message becomes available
it calls pcPrintGetNextMessage() to obtain a pointer to the next string, then
uses the functions defined in the portable layer FileIO.c to display the message.

NOTE: Using console IO can disrupt real time performance - depending on
the port. Standard C IO routines are not designed for real time applications.
While standard IO is useful for demonstration and debugging an alternative
method should be used if you actually require console IO as part of your appli-
cation.

4.2.13.13 semtest.c

Creates two sets of two tasks. The tasks within a set share a variable, access to
which is guarded by a semaphore. Each task starts by attempting to obtain the
semaphore. On obtaining a semaphore a task checks to ensure that the guarded
variable has an expected value. It then clears the variable to zero before counting
it back up to the expected value in increments of 1. After each increment the
variable is checked to ensure it contains the value to which it was just set. When
the starting value is again reached the task releases the semaphore giving the
other task in the set a chance to do exactly the same thing. The starting value is
high enough to ensure that a tick is likely to occur during the incrementing loop.
An error is flagged if at any time during the process a shared variable is found
to have a value other than that expected. Such an occurrence would suggest
an error in the mutual exclusion mechanism by which access to the variable is
restricted. The first set of two tasks poll their semaphore. The second set use
blocking calls.

4.3 Task Management

4.3.1 Overview

This section will describe task management structures and mechanisms used by
the scheduler.

4.3.2 Task Control Block

The FreeRTOS kernel manages tasks via the Task Control Block (TCB). A
TCB exists for each task in FreeRTOS and contains all information necessary



Source Code Analysis 97

Top of Stack Pointer to last item placed on the stack for this task
Task State List item that puts the TCB in the ready or blocked

queues
Event List List item used to place the TCB in the event lists
Priority Task priority (0 = lowest)

Stack Start Pointer to the start of the process stack
TCB Number A debugging and tracing field
Task Name A task name
Stack Depth Total depth of the stack in variables (not bytes)

Table 4.1: Task Control Block for FreeRTOS

to completely describe the state of a task. The fields in the TCB for FreeRTOS
are shown in Table 4.1 (derived from tasks.c).

4.3.3 Task State Diagram

A task in FreeRTOS can exist in one of five states. These are Deleted, Sus-
pended, Ready, Blocked and Running. A state diagram for FreeRTOS tasks
is shown in Figure 4.2.

The FreeRTOS kernel creates a task by instantiating and populating a
TCB. New tasks are placed immediately in the Ready state by adding them to
the Ready list.

The Ready list is arranged in order of priority with tasks of equal priority
being serviced on a round-robin basis. The implementation of FreeRTOS ac-
tually uses multiple Ready lists C one at each priority level. When choosing
the next task to execute, the scheduler starts with the highest priority list and
works its way progressively downward.

The FreeRTOS kernel does not have an explicit “Running” list or state.
Rather, the kernel maintains the variable pxCurrentTCB to identify the process
in the Ready list that is currently running. pxCurrentTCB is therefore defined
as a pointer to a TCB structure.

Tasks in FreeRTOS can be blocked when access to a resource is not cur-
rently available. The scheduler blocks tasks only when they attempt to read
from or write to a queue that is either empty or full respectively. This includes
attempts to obtain semaphores since these are special cases of queues.

As indicated earlier, access attempts against queues can be blocking or non-
blocking. The distinction is made via the xTicksToWait variable which is passed
into the queue access request as an argument. If xTicksToWait is 0, and the
queue is empty/full, the task does not block. Otherwise, the task will block for
a period of xTicksToWait scheduler ticks or until an event on the queue frees
up the resource.

Tasks can also be blocked voluntarily for periods of time via the API. The
scheduler maintains a “delayed” task list for this purpose. The scheduler visits



Source Code Analysis 98

Figure 4.2: Basic Task State Diagram for FreeRTOS



Source Code Analysis 99

FreeRTOSConfig.h Lists Created

configMAX PRIORITIES ReadyTasksLists[0]

.

.

.
ReadyTasksLists[configMAX PRIORITIES]

INCLUDE vTaskDelete = 1 TaskWaitingTermination

INCLUDE vTaskSuspend = 1 SuspendedTaskList

N/A PendingReadyList

N/A DelayedTaskList

N/A OverflowDelayedTaskList

Table 4.2: Lists Created by the Scheduler

this task list at every scheduler decision point to determine if any of the tasks
have timed-out. Those that have are placed on the Ready list. The FreeRTOS
API provides vTaskDelay and vTaskDelayUntil functions that can be used to
put a task on the delayed task list.

Any task or, in fact, all tasks except the one currently running (and those
servicing ISRs) can be placed in the Suspended state indefinitely. Tasks that are
placed in this state are not waiting on events and do not consume any resource
or kernel attention until they are moved out of the Suspended state. When
un-suspended, they are returned to the Ready state.

Tasks end their life-cycle by being deleted (or deleting themselves). The
Deleted state is required since deletion does not necessarily result in the imme-
diate release of resources held by a task. By putting the task in the Deleted
state, the scheduler in the FreeRTOS kernel is directed to ignore the task. The
IDLE task has the responsibility to clean up after tasks have been deleted and,
since the IDLE task has the lowest priority, this may take time.

4.4 List Management

4.4.1 Overview

This section provides an overview of list creation and management in FreeR-
TOS. This information is useful for understanding the functionality of various
FreeRTOS modules described in later sections.

4.4.2 Ready and Blocked Lists

Table 4.2 shows all of the lists that are created and used by the scheduler and
their dependencies on configuration values in FreeRTOSConfig.h. Note that the
{Ready} list is not a single list but actually n lists where n = configMAX PRIO-

RITIES.



Source Code Analysis 100

NumberOfItems The number of items in the list
(xListItem) * pxIndex Pointer used to walk through the list. It

points to successive list items in the list
(xMiniListItem) A list item that marks the end of the list.

xListEnd It contains the maximum value in xListValue

and therefore always appears at the
end of the list

Table 4.3: Type xList

ItemValue The value being listed -
normally a time (value is
defined as portTickType.
Used to order the list

* pxNext Pointer to the next list item
in the list.

* pxPrevious Pointer to the previous list
item in the list.

* pvOwner Pointer to the object that
contains the list item. This
is a normally TCB

* pvContainer Pointer to the list in which
this list item placed

Table 4.4: Type xListItem

Each of the lists in Table 4.2 is created as type xList which is a structure
defined as shown in Table 4.3. Each list has an entry identifying the number of
items in the list. The list has an index pointer pxIndex that points to one of the
items in the list (which is used to iterate through a list). The pxIndex points to
type xListItem which is the only type that a list can hold. The only exception
is xListEnd which is of type xMiniListItem. The structures xListItem and
xMiniListItem are shown in Table4.4 and 4.5.

4.4.3 List Initialization

Figure 4.3 shows an example is the initialization of the list {DelayedTaskList}.
The number of items is initially set to zero. The pxIndex pointer and pxNext

and pxPrevious pointers are all set to the address of the xListEnd structure.
The xItemValue in the xListEnd structure must hold the maximum possible

value. Because {DelayedTaskList} is used to list tasks based on the amount
of time that they can block, this value is set to portMAX DELAY.



Source Code Analysis 101

ItemValue The value being listed -
normally a time (value is
defined as portTickType.
Used to order the list

* pxNext Pointer to the next list item
in the list.

* pxPrevious Pointer to the previous list
item in the list.

Table 4.5: Type xMiniListItem

Figure 4.3: List Initialization



Source Code Analysis 102

Figure 4.4: vListInsert with Arguments

4.4.4 Inserting a Task Into a List

To insert a task into a list (for example, the {DelayedTaskList}), FreeRTOS
uses vListInsert. Arguments to this function include the pointer to the list to
be modified and a pointer to the Generic List Item portion of the TCB about
to be listed as shown in Figure 4.4.

In the figure, the xItemValue within the Generic List Item field has already
been set to 38 (an arbitrary number). In this case, that would represent the
absolute clock tick upon which the task associated with this TCB should be
woken up and re-inserted into the {Ready} list. Also note that the *pvOwner

pointer has been set to point to the TCB containing the Generic List Item. This
allows fast identification of the TCB.

Figure 4.5 shows and example of what a {DelayedTaskList} might look like
with two listed tasks. The *pxNext pointer in the xListEnd structure of the
list is not NULL C it points to the first entry in the list as shown in the figure.

To insert a new task into the {DelayedTaskList}, vListInsert proceeds
as follows. The xItemValue within the new Generic List Item is compared with
the xItemValue from the first TCB in the list. In the {DelayedTaskList} case,
this will be the absolute clock tick on which the task should be woken. If the
existing value is lower (in this case, 24 < 38), the *pxNext pointer is used to
move on to the next TCB in the list. When the comparison fails, then the
current TCB must be “moved to the right” while the new task TCB is inserted.
This is done by modifying the *pxNext and *pxPrev pointers of the adjacent list
items and both the *pxNext and *pxPrev pointers within the new TCB itself.



Source Code Analysis 103

Figure 4.5: Hypothetical DelayedTaskList

Finally, the *pxContainer pointer in the newly listed TCB is modified to point
to the {DelayedTaskList}. This pointer is apparently used for quick removal
at a later time. Once the new TCB is entered, the NumberOfItems value in the
{DelayedTaskList} structure is updated.

The code that implements this insertion is shown in Figure 4.6. Normally,
code segments will not be presented within this document. However, in this
case, the code is exceptionally concise and therefore worthy of presentation.

The for loop at point A initializes pxIterator (having type xListItem)
to the last item in the list which is, by default, xListEnd. As mentioned, the
*pxNext pointer of xListEnd points to the first item in the list. The comparison
operation in the for loop checks the xItemValue in the structure pointed to by
the current *pxNext and, if true, pxIterator takes on the value of the next list
item.

It should be noted that a boundary condition occurs when the new xItem-

Value is equal to portMAX DELAY as defined in FreeRTOSConfig.h. FreeRTOS
handles this exception by assigning the task the second last place in the list.

4.4.5 Timer Counter Size and {DelayedTaskList}
Tasks that are placed on the {DelayedTaskList} are placed there by the sched-
uler or by API calls such as vTaskDelay or vTaskDelayUntil. In all cases, an
absolute time is calculated for the task to be woken. For example, if the task
is to delay for 10 ticks, then 10 is added to the current tick count and that



Source Code Analysis 104

Figure 4.6: Code Extract from Lists.c in FreeRTOS

becomes the xItemValue to be stored in the Generic List Item structure.
However, the embedded controllers being targeted by FreeRTOS have coun-

ters that can be as small as 8-bits C resulting in a counter rollover after only
255 ticks. To deal with this, FreeRTOS defines and uses two delay lists C
{DelayedTaskList} and {OverflowDelayedTaskList}.

As shown in Figure 4.7, the time to sleep is added to the current time at
point A. At point B, if the sum turns out to be less than the current timer value,
then the time to wake should be inserted into the {OverflowDelayedTaskList}.

Note that, for this to work, the maximum number of ticks that a task can
be blocked must be less than the size of the counter (i.e., FF in the case of an
8-bit counter). This maximum value is set in the FreeRTOSConfig.h variable
portMAX DELAY.

Each time the tick count is increased (in the function vTaskIncrementTick),
a check is performed to determine if the counter has rolled over. If it has,
then the pointers to {DelayedTaskList} and {OverflowDelayTaskList} are
swapped as shown in the code segment in Figure 4.8.

4.5 Context Switch

This section describes the RTOS context switch source code from the bottom
up. The FreeRTOS Atmel AVR microcontroller port is used as an example.
The section ends with a detailed step by step look at one complete context
switch.



Source Code Analysis 105

Figure 4.7: Deciding Which Delayed List To Insert (from Task.c)

Figure 4.8: Exchanging List Pointers When Timer Overflows



Source Code Analysis 106

Figure 4.9: ISR for TICK

4.5.1 C Development Tools

A goal of FreeRTOS is that it is simple and easy to understand. To this end
the majority of the RTOS source code is written in C, not assembler. The
example presented here uses the WinAVR development tools. WinAVR is a
free Windows to AVR cross compiler based on GCC.

4.5.2 The RTOS Tick

When sleeping, a task will specify a time after which it requires ‘waking’. When
blocking, a task can specify a maximum time it wishes to wait.

The FreeRTOS real time kernel measures time using a tick count variable.
A timer interrupt (the RTOS tick interrupt) increments the tick count with
strict temporal accuracy - allowing the real time kernel to measure time to a
resolution of the chosen timer interrupt frequency.

Each time the tick count is incremented the real time kernel must check
to see if it is now time to unblock or wake a task. It is possible that a task
woken or unblocked during the tick ISR will have a priority higher than that
of the interrupted task. If this is the case the tick ISR should return to the
newly woken/unblocked task - effectively interrupting one task but returning to
another. This is depicted below:

Referring to the numbers in Figure 4.9 above:

• At (1) the RTOS idle task is executing.

• At (2) the RTOS tick occurs, and control transfers to the tick ISR (3).

• The RTOS tick ISR makes vControlTask ready to run, and as vCon-
trolTask has a higher priority than the RTOS idle task, switches the con-
text to that of vControlTask.

• As the execution context is now that of vControlTask, exiting the ISR (4)
returns control to vControlTask, which starts executing (5).



Source Code Analysis 107

A context switch occurring in this way is said to be Preemptive, as the inter-
rupted task is preempted without suspending itself voluntarily.

The AVR port of FreeRTOS uses a compare match event on timer 1 to
generate the RTOS tick. The following pages describe how the RTOS tick ISR
is implemented using the WinAVR development tools.

4.5.3 GCC Signal Attribute

The GCC development tools allow interrupts to be written in C. A compare
match event on the AVR timer 1 peripheral can be written using the following
syntax.

void SIG_OUTPUT_COMPARE1A(void)__attribute__((signal));

void SIG_OUTPUT_COMPARE1A(void)

{

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

}

The ‘ attribute ((signal))’ directive on the function prototype informs
the compiler that the function is an ISR and results in two important changes
in the compiler output.

1. The ‘signal’ attribute ensures that every processor register that gets mod-
ified during the ISR is restored to its original value when the ISR exits.
This is required as the compiler cannot make any assumptions as to when
the interrupt will execute, and therefore cannot optimize which processor
registers require saving and which don’t.

2. The ‘signal’ attribute also forces a ‘return from interrupt’ instruction
(RETI) to be used in place of the ‘return’ instruction (RET) that would
otherwise be used. The AVR microcontroller disables interrupts upon en-
tering an ISR and the RETI instruction is required to re-enable them on
exiting.

Code output by the compiler:

;void SIG_OUTPUT_COMPARE1A(void)

;{

;---------------------------------------

; CODE GENERATED BY THE COMPILER TO SAVE

; THE REGISTERS THAT GET ALTERED BY THE

; APPLICATION CODE DURING THE ISR.

PUSH R1

PUSH R0

IN R0,0x3F

PUSH R0

CLR R1



Source Code Analysis 108

PUSH R18

PUSH R19

PUSH R20

PUSH R21

PUSH R22

PUSH R23

PUSH R24

PUSH R25

PUSH R26

PUSH R27

PUSH R30

PUSH R31

;---------------------------------------

; CODE GENERATED BY THE COMPILER FROM THE

; APPLICATION C CODE.

; vPortYieldFromTick()

; {

; CALL 0x0000029B

; Call subroutine

; }

;---------------------------------------

; CODE GENERATED BY THE COMPILER TO

; RESTORE THE REGISTERS PREVIOUSLY

; SAVED.

POP R31

POP R30

POP R27

POP R26

POP R25

POP R24

POP R23

POP R22

POP R21

POP R20

POP R19

POP R18

POP R0

OUT 0x3F, R0

POP R0

POP R1

RETI

;---------------------------------------

;}

4.5.4 GCC Naked Attribute

The previous section showed how the ‘signal’ attribute can be used to write
an ISR in C and how this results in part of the execution context being auto-



Source Code Analysis 109

matically saved (only the processor registers modified by the ISR get saved).
Performing a context switch however requires the entire context to be saved.

The application code could explicitly save all the processor registers on en-
tering the ISR, but doing so would result in some processor registers being saved
twice - once by the compiler generated code and then again by the application
code. This is undesirable and can be avoided by using the ‘naked’ attribute in
addition to the ‘signal’ attribute.

void SIG_OUTPUT_COMPARE1A(void) __attribute__ ((signal, naked));

void SIG_OUTPUT_COMPARE1A(void)

{

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

}

The ‘naked’ attribute prevents the compiler generating any function entry
or exit code. Now compiling the code results in much simpler output:

;void SIG_OUTPUT_COMPARE1A(void)

;{

;---------------------------------------

; NO COMPILER GENERATED CODE HERE TO SAVE

; THE REGISTERS THAT GET ALTERED BY THE

; ISR.

;---------------------------------------

; CODE GENERATED BY THE COMPILER FROM THE

; APPLICATION C CODE.

; vTaskIncrementTick();

CALL 0x0000029B

; Call subroutine

;---------------------------------------

; NO COMPILER GENERATED CODE HERE TO RESTORE

; THE REGISTERS OR RETURN FROM THE ISR.

;---------------------------------------

;}

When the ‘naked’ attribute is used the compiler does not generate any func-
tion entry or exit code so this must now be added explicitly. The macros
portSAVE CONTEXT() and portRESTORE CONTEXT() respectively save and re-
store the entire execution context.:

void SIG_OUTPUT_COMPARE1A(void) __attribute__ ((signal, naked));

void SIG_OUTPUT_COMPARE1A(void)

{

/* Macro that explicitly saves

the execution context.

*/

portSAVE_CONTEXT();



Source Code Analysis 110

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

/* Macro that explicitly restores the execution context. */

portRESTORE_CONTEXT();

/*

The return from interrupt call must also be explicitly added.

*/

asm volatile ("reti");

}

The ‘naked’ attribute gives the application code complete control over when
and how the AVR context is saved. If the application code saves the entire
context on entering the ISR there is no need to save it again before performing
a context switch so none of the processor registers get saved twice.

4.5.5 FreeRTOS Tick Code

The actual source code used by the FreeRTOS AVR port is slightly different
to the examples shown on the previous pages. vPortYieldFromTick() is it-
self implemented as a ‘naked’ function, and the context is saved and restored
within vPortYieldFromTick(). It is done this way due to the implementation
of nonpreemptive context switches (where a task blocks itself) - which are not
described here.

The FreeRTOS implementation of the RTOS tick is therefore (see the com-
ments in the source code snippets for further details):

void SIG_OUTPUT_COMPARE1A(void) __attribute__ ((signal, naked));

void vPortYieldFromTick(void) __attribute__ ((naked));

/* Interrupt service routine for the RTOS tick. */

void SIG_OUTPUT_COMPARE1A(void)

{

/* Call the tick function. */

vPortYieldFromTick();

/*

Return from the interrupt. If a context

switch has occurred this will return to a different task.

*/

asm volatile ("reti");

}

void vPortYieldFromTick(void)

{

/* This is a naked function so the is saved. */

portSAVE_CONTEXT();

/*

Increment the tick count and check to see if the new tick

value has caused a delay period to expire. This function



Source Code Analysis 111

call can cause a task to become ready to run.

*/

vTaskIncrementTick();

/*

See if a context switch is

required. Switch to the context of a task made ready to run by

vTaskIncrementTick() if it has a priority higher than the

interrupted task.

*/

vTaskSwitchContext();

/*

Restore the context.

If a context switch has occurred this will restore the context of

the task being resumed.

*/

portRESTORE_CONTEXT();

/*

Return from

this naked function.

*/

asm volatile ("ret");

}

4.5.6 The AVR Context

A context switch requires the entire execution context to be saved. As shown
in Figure 4.10, on the AVR microcontroller the context consists of:

• 32 general purpose processor registers. The GCC development tools as-
sume register R1 is set to zero.

• Status register. The value of the status register affects instruction execu-
tion, and must be be preserved across context switches.

• Program counter. Upon resumption, a task must continue execution from
the instruction that was about to be executed immediately prior to its
suspension.

• The two stack pointer registers.

Each real time task has it’s own stack memory area so the context can be
saved by simply pushing processor registers onto the task stack. Saving the
AVR context is one place where assembly code is unavoidable.

portSAVE CONTEXT() is implemented as a macro, the source code for which
is given below:

#define portSAVE_CONTEXT() \

asm volatile ( \

"push r0 \n\t" \ (1)



Source Code Analysis 112

Figure 4.10: The Context of AVR



Source Code Analysis 113

"in r0, __SREG__ \n\t" \ (2)

"cli \n\t" \ (3)

"push r0 \n\t" \ (4)

"push r1 \n\t" \ (5)

"clr r1 \n\t" \ (6)

"push r2 \n\t" \ (7)

"push r3 \n\t" \

"push r4 \n\t" \

"push r5 \n\t" \

:

:

:

"push r30 \n\t" \

"push r31 \n\t" \

"lds r26, pxCurrentTCB \n\t" \ (8)

"lds r27, pxCurrentTCB + 1 \n\t" \ (9)

"in r0, __SP_L__ \n\t" \ (10)

"st x+, r0 \n\t" \ (11)

"in r0, __SP_H__ \n\t" \ (12)

"st x+, r0 \n\t" \ (13)

);

Referring to the source code above:

• Processor register R0 is saved first as it is used when the status register is
saved, and must be saved with its original value.

• The status register is moved into R0 (2) so it can be saved onto the stack
(4).

• Processor interrupts are disabled (3). If portSAVE CONTEXT() was only
called from within an ISR there would be no need to explicitly disable
interrupts as the AVR will have already done so. As the portSAVE -

CONTEXT() macro is also used outside of interrupt service routines (when
a task suspends itself) interrupts must be explicitly cleared as early as
possible.

• The code generated by the compiler from the ISR C source code assumes
R1 is set to zero. The original value of R1 is saved (5) before R1 is cleared
(6).

• Between (7) and (8) all remaining processor registers are saved in numer-
ical order.

• The stack of the task being suspended now contains a copy of the tasks
execution context. The kernel stores the tasks stack pointer so the context
can be retrieved and restored when the task is resumed. The X processor
register is loaded with the address to which the stack pointer is to be saved
(8 and 9).



Source Code Analysis 114

• The stack pointer is saved, first the low byte (10 and 11), then the high
nibble (12 and 13).

4.5.7 Restoring the Context

portRESTORE CONTEXT() is the reverse of portSAVE CONTEXT(). The context of
the task being resumed was previously stored in the tasks stack. The real time
kernel retrieves the stack pointer for the task then POP’s the context back into
the correct processor registers.

#define portRESTORE_CONTEXT() \

asm volatile ( \

"lds r26, pxCurrentTCB \n\t" \ (1)

"lds r27, pxCurrentTCB + 1 \n\t" \ (2)

"ld r28, x+ \n\t" \

"out __SP_L__, r28 \n\t" \ (3)

"ld r29, x+ \n\t" \

"out __SP_H__, r29 \n\t" \ (4)

"pop r31 \n\t" \

"pop r30 \n\t" \

:

:

:

"pop r1 \n\t" \

"pop r0 \n\t" \ (5)

"out __SREG__, r0 \n\t" \ (6)

"pop r0 \n\t" \ (7)

);

Referring to the code above:

• pxCurrentTCB holds the address from where the tasks stack pointer can
be retrieved. This is loaded into the X register (1 and 2).

• The stack pointer for the task being resumed is loaded into the AVR stack
pointer, first the low byte (3), then the high nibble (4).

• The processor registers are then popped from the stack in reverse numer-
ical order, down to R1.

• The status register stored on the stack between registers R1 and R0, so is
restored (6) before R0 (7).

4.5.8 Putting It All Together

The final part of section 2 shows how these building blocks and source code
modules are used to achieve an RTOS context switch on the AVR microcon-
troller. The example demonstrates in seven steps the process of switching from
a lower priority task, called TaskA, to a higher priority task, called TaskB. The
source code is compatible with the WinAVR C development tools.



Source Code Analysis 115

Figure 4.11: The Context Switch - Step 1

4.5.8.1 Context Switch - Step 1

Prior to the RTOS Tick Interrupt

This example starts with TaskA executing. TaskB has previously been suspended
so its context has already been stored on the TaskB stack. TaskA has the context
demonstrated by Figure 4.11.

The (A) label within each register shows that the register contains the correct
value for the context of TaskA.

4.5.8.2 Context Switch - Step 2

The RTOS Tick Interrupt Occurs

The RTOS tick occurs just as TaskA is about to execute an LDI instruction.
When the interrupt occurs the AVR microcontroller automatically places the
current program counter (PC) onto the stack before jumping to the start of the
RTOS tick ISR as shown in Figure 4.11.

4.5.8.3 Context Switch - Step 3

The RTOS Tick Interrupt Executes

The ISR source code is given below. The comments have been removed to ease
reading, but can be viewed on a previous page.

/* Interrupt service routine for the RTOS tick. */

void SIG_OUTPUT_COMPARE1A(void)

{

vPortYieldFromTick();



Source Code Analysis 116

Figure 4.12: The Context Switch - Step 2

asm volatile ("reti");

}

void vPortYieldFromTick(void)

{

portSAVE_CONTEXT();

vTaskIncrementTick();

vTaskSwitchContext();

portRESTORE_CONTEXT();

asm volatile ("ret");

}

SIG OUTPUT COMPARE1A() is a naked function, so the first instruction is a call
to vPortYieldFromTick(). vPortYieldFromTick() is also a naked function so
the AVR execution context is saved explicitly by a call to portSAVE CONTEXT().

portSAVE CONTEXT() pushes the entire AVR execution context onto the
stack of TaskA, resulting in the stack illustrated in Figure 4.13. The stack pointer
for TaskA now points to the top of it’s own context. portSAVE CONTEXT() com-
pletes by storing a copy of the stack pointer. The real time kernel already has
copy of the TaskB stack pointer - taken the last time TaskB was suspended.

4.5.8.4 Context Switch - Step 4

Incrementing the Tick Count

vTaskIncrementTick() executes after the TaskA context has been saved. For
the purposes of this example assume that incrementing the tick count has caused
TaskB to become ready to run. TaskB has a higher priority than TaskA so



Source Code Analysis 117

Figure 4.13: The Context Switch - Step 3

vTaskSwitchContext() selects TaskB as the task to be given processing time
when the ISR completes.

4.5.8.5 Context Switch - Step 5

The TaskB Stack Pointer is Retrieved

The TaskB context must be restored. The first thing portRESTORE CONTEXT

does is retrieve the TaskB stack pointer from the copy taken when TaskB was
suspended. The TaskB stack pointer is loaded into the processor stack pointer,
so now the AVR stack points to the top of the TaskB context as shown in
Figure 4.14.

4.5.8.6 Context Switch - Step 6

Restore the TaskB context portRESTORE CONTEXT() completes by restoring the
TaskB context from its stack into the appropriate processor registers. Only the
program counter remains on the stack as shown in Figure 4.15.

4.5.8.7 Context Switch - Step 7

The RTOS tick exits vPortYieldFromTick() returns to SIG OUTPUT COMPARE-

1A() where the final instruction is a return from interrupt (RETI). A RETI



Source Code Analysis 118

Figure 4.14: The Context Switch - Step 5

Figure 4.15: The Context Switch - Step 6



Source Code Analysis 119

Figure 4.16: The Context Switch - Step 7

instruction assumes the next value on the stack is a return address placed onto
the stack when the interrupt occurred. When the RTOS tick interrupt started
the AVR automatically placed the TaskA return address onto the stack - the
address of the next instruction to execute in TaskA. The ISR altered the stack
pointer so it now points to the TaskB stack. Therefore the return address
POP’ed from the stack by the RETI instruction is actually the address of the
instruction TaskB was going to execute immediately before it was suspended.
The RTOS tick interrupt interrupted TaskA, but is returning to TaskB - the
context switch is complete! If you would like more information, take a look
at the FreeRTOS ColdFire Implementation Report. This was written by the
Motorola ColdFire port authors, and details both the ColdFire source code
and the development process undertaken in producing the port as shown in
Figure 4.16.

4.6 The FreeRTOS Scheduler

4.6.1 Overview

This section provides a detailed overview of the scheduler mechanism in FreeR-
TOS. Because of the configuration options that allow cooperative operation and
scheduler suspension, the scheduler mechanism has considerable complexity.

Figure 4.17 provides an overview of the scheduler algorithm. The scheduler
operates as a timer interrupt service routine (vPortTickInterrupt) that is
activated once every tick period. The tick period is defined by configuring the

FreeRTOSConfig.h parameter configTICK RATE HZ.
Because the scheduler operates as an interrupt, it is part of the HAL and

contains implementation specific code. In Figure 4.17, the HAL implementation



Source Code Analysis 120

Figure 4.17: Scheduler Algorithm

for the 68HC12 includes stacking (and un-stacking) a set of “soft registers” that
are used by GCC (shown in the sections with dashed lines). Details of the
nature and use of soft registers can be found in [GCC1].

The first operation performed by the scheduler is to reset the counter timer (a
hardware specific instruction) in order to start the next tick period. FreeRTOS
can be configured to be co-operative or preemptive. In the scheduler, after
the clock is reset, the FreeRTOSConfig.h variable configUSE PREEMPTION is
referenced to determine which mode is being used.

In the co-operative case, the only operation performed before returning from
the timer interrupt is to increment the tick count. There is a significant amount
of logic behind this operation that is required in order to deal with special cases
and timer size limitations. We will visit that logic shortly.

If the scheduler is preemptive, then the first step is to stack the context of
the current task in the event that a context switch is required. The scheduler
increments the tick count and then checks to see if this action caused a blocked
task to unblock. If a task did unblock and that task has a higher priority than
the current task, then a context switch is executed. Finally, context is restored,
soft registers are un-stacked, and the scheduler returns from the interrupt.

4.6.2 Task Context Frame

The following several paragraphs describe the construction of the FreeRTOS
“context frame” and the mechanism by which a context switch is executed. A



Source Code Analysis 121

Figure 4.18: Stacking of MCU Context

task’s context is constructed from data that is provided automatically as part
of interrupt servicing as well as additional context information provided from
several macros. It is important to know what is expected within a context frame
and how to populate it when both starting a task or when performing a context
switch between tasks.

When an ISR occurs, the HCS12 (like most other embedded MCUs) will
immediately stack the MCU context using the current stack pointer. The MCU
context for the HCS12 consists of the program counter (the return address), the
Y and X registers, the A and B registers, and the condition code register (CCR)
[S12CPUV2]. All of these registers are stacked in the order just indicated prior
to the MCU jumping to the interrupt service routine. Figure 4.18 shows a task,
Task 1, with its associated TCB and stack space both prior to an ISR and
immediately before the ISR takes control of the MCU.

In the GCC implementation of FreeRTOS on the HC11 or HC12 MCU, up
to 12 bytes of “soft registers” are stacked on top of the MCU state provided
by the ISR mechanism. These registers are stacked explicitly by executing the
portISR HEADmacro within the HAL. They are un-stacked using portISR TAIL.

The final context information is provided by executing the portSAVE CON-

TEXT macro within the HAL. This macro first stacks a variable that tracks the
critical nesting depth for the task (discussed later). If the target had been using
the banked memory model for Freescale devices, then the PPAGE register would
also be stacked. The macro then stores the current value of the stack pointer
register into the head entry of the TCB for Task 1. The context frame, as



Source Code Analysis 122

Figure 4.19: Context Frame on Stack 1

built by the ISR mechanism, portISR HEAD, and portSAVE CONTEXT is shown
in Figure 4.19.

To exit from the ISR following its work, portRESTORE CONTEXT, portISR -

TAIL, and an RTI must be executed in that sequence in order to properly clear
the stack of the context frame.

4.6.3 Context Switch By Stack Pointer Manipulation

In Figure 4.18, one of the tasks of the scheduler is to determine if a context
switch is required. If that is the case, then a stack pointer manipulation is
performed to execute the switch. The scheduler copies the head entry of Task
2 into the stack pointer register (recall that the head entry is a pointer to the
stack space of Task 2). If the context of Task 2 had been saved according to the
context frame definition, then executing portRESTORE CONTEXT, portISR TAIL,
and an RTI will restore the context of Task 2 to the MCU.

4.6.4 Starting and Stopping Tasks

Although the act of starting or stopping a task is not a direct scheduler func-
tion, a brief description will be provided here since the scheduler manipulates
the data structures and stacks created when a task is created. Therefore, an un-
derstanding of task creation and deletion will assist in describing the remaining
scheduler functions.



Source Code Analysis 123

Tasks are created by invoking xTaskCreate() from within main.c or within
a task itself. Parameters required to create a task include:

• A pointer to the function that implements the task. For obvious reasons,
the code that implements the task function must invoke an infinite loop.

• A name for the task. This is used mainly for code debugging and moni-
toring in FreeRTOS.

• The depth of the task’s stack.

• The task’s priority.

• A pointer to any parameters needed by the task function.

An overview of the process of creating a task is shown in Figure 4.20.
xTaskCreate must first allocate memory for the task’s TCB and stack. This

is accomplished by calling AllocateTCBandStack as shown in Figure 4.21. This
function invokes portMalloc to obtain a block of memory for the TCB that
is the size of the TCB structure and a block of memory for the stack that is
the size of the stack data type (e.g., 8, 16 bits) multiplied by the size of the
stack requested. These two memory blocks are obtained from the heap whose
maximum size is specified in the FreeRTOSConfig parameter configTOTAL -

HEAP SIZE. As a final exercise, AllocateTCBandStack sets a pointer to the base
address of the stack inside the TCB.

portMalloc is implemented within the HAL. Specifically, by choosing to
compile one of heap1.c, heap2.c, or heap3.c with the project, a range of mem-
ory allocation strategies (and the corresponding portMalloc implementations)
can be achieved. For example, heap1.c implements a policy of allocating heap
memory to a task once and does not allow deallocation of that memory. This
policy is good for applications with a known set of tasks that will not vary with
time. The policy invoked in heap2.c allows for allocation and deallocation of
heap memory using best-fit to located the request block but it does not perform
cleanup on fragmented but adjacent blocks. The allocation policy in heap3.c

simply provides wrappers for traditional malloc() and calloc() allocation.
Referring back to Figure 4.20, the second task performed by xTaskCreate

(assuming memory was successfully obtained) is to initialize the TCB with
known values. This includes initializing the task name, task priority, and stack
depth fields of the TCB from function call parameters.

The third and fourth steps in xTaskCreate prepare the task for its first
context switch. A pointer to the top-of-stack is initialized to the base stack
address found in the task TCB (an adjustment is necessary depending on the
stack growth mechanism on the target C some targets “grow” the stack towards
lower memory while others do the opposite). The stack for the task is then
populated with a dummy frame that perfectly matches what is required when
a context switch is performed by a combination of portRESTORE CONTEXT and
port ISRTAIL macros as discussed earlier. The content of the dummy frame is



Source Code Analysis 124

Figure 4.20: Overview of Task Creation



Source Code Analysis 125

Figure 4.21: Allocate Stack and TCB Memory

Figure 4.22: Dummy Stack Frame



Source Code Analysis 126

shown in Figure 4.22. The important element of the dummy frame is the return
address which will point to the start address of the task code.

After populating the dummy stack for the task, the top-of-stack pointer
(which now points to TOS-21 in Figure 4.22) is updated and written back to
the TCB. This stack pointer is the head value in the TCB is extracted directly
to perform a context switch as discussed earlier.

Each time a task is created successfully, xTaskCreate must determine if the
scheduler is running. If it is running, then the new task can simply be added
to the Ready list and the scheduler will, on its first (or next) interrupt, deter-
mine which task has the highest priority. If the scheduler is not running, then
xTaskCreate must determine if the task just created is the highest priority task
and then ensure that this is tracked (using the pxCurrentTCB global variable).

The final step in creating the task is to add it to the Ready list. This is
performed by a call to the function prvAddTaskToReadyQueue. This function
determines what priority level the task is and adds it to the back of the ap-
propriate Ready list. If a list does not exist at that priority (which would only
happen if the task were created dynamically after startup), then the appropriate
list is first created. pxCurrentTCB is adjusted by prvAddTaskToReadyQueue to
track the TCB to be context-switched in next.

4.6.5 Yeilding Between Ticks

The scheduler responds to the timer ISR. A second ISR is required for yielding a
task in the event of being blocked or completing early. This is implemented by a
software interrupt (SWI). Any call to portYIELD causes the assembly instruction
“SWI” to execute which, in turn, invokes the ISR code attached to that interrupt
(defined in port.c as vportYIELD). The SWI builds a context frame as described
previously C it executes portISR HEAD and portSAVE CONTEXT, determines if
any context switch is required (and loads the new task’s TCB head into the stack
pointer if necessary), and then un-stacks the context frame as appropriate. Note
that an SWI is non-maskable whereas the timer responsible for the scheduler can
be masked.

4.6.6 Starting the Scheduler

Figure 4.23 shows the process that occurs when the FreeRTOS scheduler is
started. A call to the FreeRTOS function vTaskStartScheduler() should be
the last function call made in main.c after all of the other required tasks have
been created using the function xTaskCreate().

The vTaskStartScheduler() function first creates the IDLE task with the
lowest priority and then sets the global timer xTickCount to zero. The global
xSchedulerRunning is set to TRUE. This variable is used to in several areas
to determine if the scheduler is available to make scheduler decisions or if those
decisions need to be made locally. For example, tasks can be created before
or after the scheduler is started. When tasks are created before, the creation
mechanism includes a method to determine whether the task just created is the



Source Code Analysis 127

Figure 4.23: FreeRTOS Task Scheduler Startup



Source Code Analysis 128

new priority task and switches pxTCBCurrent to reflect that status (without
performing a context switch). Otherwise, the scheduler is used.

vTaskStartScheduler() passes control to xTaskStartScheduler() in the
HAL. The HAL is needed at this point because the first order of business for
xTaskStartScheduler() is to set up a timer interrupt to invoke the scheduler.
Since the timer is hardware dependent, configuring it must occur in the HAL.

The last thing that xTaskStartScheduler() does is to restore the context
of the currently selected task which is pointed to by pxTCBCurrent and which,
by virtue of the previous operations, is the highest priority task. The context is
switched by calling portRESTORE CONTEXT and portISR TAIL. This might seem
to be a logic error since no task was previously running. However, as described
earlier, each task is provided with a dummy stack frame when it is first created.
This frame provides the start address of the task and the head entry of the TCB
for the task is a pointer to the top of the task stack. This is all the information
required to initiate the task.

4.6.7 Suspending the Scheduler

FreeRTOS provides a task the ability to monopolize the MCU from all other
tasks for an unlimited amount of time by suspending the scheduler. Indeed, this
capability is used by FreeRTOS itself. A task might conceivably suspend the
scheduler in the event that it would like to process for a long period but not
miss any interrupts. Using a critical section blocks all interrupts C including
the timer interrupts. Extending the critical section for longer than necessary
breaks the basic tenet of keeping critical sections short both in time and space.

Regardless, normal scheduler operation can be suspended through the use
of vTaskSuspendAll and vTaskResumeAll. vTaskSuspendAll guarantees that
the current process will not be preempted while at the same time continues to
service interrupts (including the timer interrupt). Normal scheduler operation
is resumed by vTaskResumeAll.

Scheduler suspensions are nested. The nesting depth is tracked by the global
variable uxSchedulerSuspended in tasks.c. Figure 4.24 shows the algorithms
implemented for vTaskSuspendAll and vTaskResumeAll.

Each time vTaskSuspend is executed, uxSchedulerSuspended is increment-
ed. Each time xTaskResumeAll is executed, uxSchedulerSuspended is decre-
mented. If uxSchedulerSuspended is not made zero (FALSE) when xTask-

ResumeAll is executed, then nothing in that function is performed.
However, if uxSchedulerSuspended is made FALSE in xTaskResumeAll,

then all tasks that were placed on the {PendingReadyList} are moved to the
{ReadyTasksList}.

A small digression is required to understand the general concept of the
{PendingReadyList} (it will be explained in greater detail shortly). While
the scheduler is suspended, tasks on the delayed lists or event lists are not being
checked on each timer tick to see if they should be woken up. However, sus-
pending the scheduler does not stop ISRs from executing and these may cause
events that will unblock tasks. However, while the scheduler is suspended, the



Source Code Analysis 129

Figure 4.24: Algorithms for vTaskSuspend and xTaskResumeAll



Source Code Analysis 130

ISR cannot modify the ready list. Therefore, tasks that are made ready as a
result of an ISR are placed on the {PendingReadyList} and are serviced by the
scheduler when it is no longer suspended.

In xTaskResumeAll, as each task on the {PendingReadyList} is reassigned
to the {ReadyTasksList}, the priority of that task is compared to the priority
of the currently executing task. If it is greater, then a yield is required as soon
as practicable in order to get the higher priority task in control. Note that there
may be more than one task with a higher priority than the current one C the
yield will determine which is the highest and context switch to that one. A yield
is required because it is essential to move with haste to the higher priority task
C otherwise, the current task will execute until the next tick.

If timer ticks were missed while the scheduler was suspended, these will
show up in the global variable uxMissedTicks. xTaskResumeAll will attempt
to catch up on these ticks by executing vTaskIncrementTick in bulk (once for
each uxMissedTicks). If missed ticks existed and were processed, they may
have made one or more tasks Ready with higher priority than the currently
executing task. Therefore, a yield is once again required as soon as practicable.

The algorithm for vTaskIncrementTick is shown in Figure 4.25. vTask-

IncrementTick is called once each clock tick by the HAL (whenever the timer
ISR occurs). The right hand branch of the algorithm deals with normal sched-
uler operation while the left hand branch executes when the scheduler is sus-
pended. As discussed earlier, the right hand branch simply increments the tick
count and then checks to see if the clock has overflowed. If that’s the case, then
the {DelayedTask} and {OverflowDelayedTask} list pointers are swapped and
a global counter tracking the number of overflows is incremented. An increase
in the tick count may have caused a delayed task to wake up so a check is again
performed.

4.6.8 Checking the Delayed Task List

The scheduler checks {DelayedTaskList} once each tick and locates any tasks
whose absolute time is less than the current time. These tasks are moved into
the appropriate Ready list. Delayed tasks are stored in {DelayedTaskList} in
the order of their absolute wake time. Therefore, checking completes when the
first delayed task with an unexpired time is found.

4.7 Critical Section Processing

FreeRTOS implements critical sections by disabling interrupts. Critical sec-
tions are invoked through the taskENTER CRITICAL() macro definition (which
maps to portENTER CRITICAL() since entering a critical section will invoke op-
erations in the HAL). An equivalent taskEXIT CRITICAL() exists.

Critical sections in FreeRTOS can be nested. Nesting will occur when a
function enters a critical section to perform some processing and, while in that



Source Code Analysis 131

Figure 4.25: Algorithm for vTaskIncrementTick



Source Code Analysis 132

* pcHead Pointer to the byte at the start of Q in memory
* pcTail Pointer to the byte at the end of Q in memory

(one more than neccesary)
* pcWriteTo Pointer to the next free byte in the Q
* pcReadFrom Pointer to the last byte that was read from

the Q
(xList) List of tasks (in priority order) waiting

TasksWaitingToSend to send on this Q
(xList) List of tasks (in priority order) waiting

TasksWaitingToReceive to receive on this Q
uxMessagesWaiting Number of items currently in the Q

uxLength The length of the Q in Q-able items (not byte)
uxItemSize The size of each Q-able items in bytes
xRxLocks The number of items received (removed)

from the Q while the queue was locked
xTxLocks Store the number of items transmitted (added)

to the Q while the queue was locked

Table 4.6: Queue Structure Elements

section, calls another function that also calls a critical section (the two func-
tions may be designed to operate independently). If nesting is not performed,
the second function will execute an exit from the critical section (turning in-
terrupts back on) when it is complete and then return to the first function
which is expecting interrupts to be disabled. By using a nesting counter, each
function increments the count on entry and decrements on exit. If the count is
decremented and equals zero, interrupts can safely be enabled.

In FreeRTOS, the nesting depth is held in the uxCriticalNesting variable
which is stacked as part of task context. This means that each task keeps track
of its own critical nesting count because it is possible for a task to yield from
within a critical section (need to find an example of this).

4.8 Queue Management

4.8.1 Overview

This section provides an overview of queue creation and management. The
mechanisms used to implement blocking and non-blocking accesses to a queue
(queue read) are described in depth. Queue writes are very similar to reads and
will only be peripherally described. Table 4.6 shows the elements of a queue
structure. Two structures of type xList hold the {TasksWaitingToSend} and
{TasksWaitingToReceive} event lists. The items in these event lists are sorted
and stored in order of task priority so that taking an item from the list head is
equivalent to obtaining the highest priority item without searching.



Source Code Analysis 133

Figure 4.26: Queue Elements

The physical queue size is determined by the number of queue-able items
(uxLength) multiplied by the size (in bytes) of each item (uxItemSize). This
is an important factor to keep in mind when calculating space requirements for
memory-constrained applications.

Figure 4.26 shows a logical overview of a queue and the entities that affect it
or are affected by it. It also shows the initial positions of the *pcHead, *pcTail,
*pcWriteTo, and *pcReadFrom pointers (assuming that the head of the queue
is the left-most position).

When a blocking task fails to read or write to a queue, it is placed in one
of the waiting lists shown in the figure. The difference between a blocking task
and a non-blocking task in FreeRTOS is the number of ticks that a task should
wait when blocked. If the number of ticks is set to zero, the task does not block.
Otherwise, it blocks for the period specified. As a result, every task that ends
up on either the TaskWaitingToReceive or TaskWaitingToSend event lists will
also end up in the DelayedTasks list. A task that is on either list will be made
Ready when its delay time expires or when an event occurs that frees it from
the waiting list.

Queues can be written via an API call or from within an ISR. Since ISRs
are atypical, their behaviour when writing to the queue is different from that
of a normally schedulable task. Therefore, there are two implementations for
writing to a queue. The situation is similar for reading from a queue.



Source Code Analysis 134

4.8.2 Posting to a Queue from an ISR

The most significant difference between an ISR-based queue post and one that
originates from within a schedulable task is that ISR-based posts are non-
blocking. If the queue is not ready to receive data, the send attempt fails
without signaling an error.

The algorithm followed by ISRQueueSend is shown in Figure 4.27. If the
Queue is not full, data from the ISR is copied into it. At this point, the algorithm
must check to see if the act of posting data into the queue is an event that would
un-block a task that is waiting to read from the queue.

The first step is to determine if the queue is locked. If it is, then it is
forbidden for the ISR to modify the event list. However, the fact that the queue
was written must be recorded so TxLock is incremented for later action.

If the queue is not locked, the algorithm checks to see if a task has already
been unblocked (or woken) by a previous write to the queue. In order to appre-
ciate this logic, it is important to understand that a single ISR can write many
times to the same queue by invoking xQueueSendFromISR multiple times (for
example, placing one queue object at a time as they are received). Therefore,
to prevent each subsequent post from pulling another task off of the event list,
history is maintained via the xTaskPreviouslyWoken variable.

On the initial call to xQueueSendFromISR, xTaskPreviouslyWoken is passed
as an argument that is initially defined as FALSE. If a task is unblocked during
that first call, xQueueSendFromISR returns TRUE C otherwise, it returns the
value that was passed in (as shown at the bottom of Figure 4.27). Therefore,
subsequent calls to xQueueSendFromISR from within the same ISR must pass
in the return value from the previous call to xQueueSendFromISR. This ensures
that multiple posts to a queue from a single ISR will only unblock a single task
(if one exists).

If no task has been previously woken (unblocked), the algorithm then checks
to see if a task is actually waiting to receive data. If so, the task is to be pulled
from the event list.

Figure 4.28 shows the xTaskRemoveFromEventList function which imple-
ments the steps required to remove a task from one of the event lists (either
{TasksWaitingToRead} or {TasksWaitingToSend}). This function will only
ever be invoked if there are no locks on the queue.

The xTaskRemoveFromEventList function removes the first available task
from the head of the event list (they are listed in order of descending priority).
At this point, it is important to recall that every blocked task will appear
on the {DelayedTaskList} whether it was placed there by a specific delay
API call or if it was blocked. As previously described, this ensures that every
blocked task has a timeout to prevent deadlock. TCBs are linked into Event
and {DelayedTaskList} via the Generic List Item and Event structures in the
TCB as shown in Figure 4.29.

If the scheduler is not suspended after removing the TCB from the {Event-
List}, then the function removes the task from the {DelayedTaskList} and
inserts it into the Ready list. If the scheduler has been suspended, then there



Source Code Analysis 135

Figure 4.27: Algorithm for Sending to a Queue from an ISR



Source Code Analysis 136

Figure 4.28: Remove Task From Event List



Source Code Analysis 137

Figure 4.29: Generic and Event Lists in TCB

is probably an operation being performed on the Ready or {DelayedTaskList}
(or both) so the task is placed in a temporary list called {PendingReadyList}.
When the scheduler is reinstated, tasks in this list will be examined and added
to the Ready list in batch.

Regardless of the list to which the task is added, xTaskRemoveFromEvent-
List determines if the task just unblocked has a priority that is equal to or
greater than the currently executing task. It provides this information to the
calling function as either a TRUE return (priority equal or higher) or a FALSE
return (priority not higher). The calling function uses this information to de-
termine if a context switch is needed immediately.

4.8.3 Posting to a Queue from a Schedulable Task

The act of making a post to a queue from within a schedulable task (as distinct
from within an ISR) is one of the most interesting aspects of FreeRTOS. Fig-
ure 4.30 and Figure 4.31 present the algorithm used to perform this operation.

The function xQueueSend suspends the scheduler, records the current time,
and locks the queue when it is invoked. Recall that locking the queue prevents
ISRs from modifying the event list but does not prevent them from posting to
the queue. xQueueSend senses the queue to see if it is full. If it is, and the
call was blocking (a non-zero tick time was provided as part of the call), then
xQueueSend blocks. Figure 4.31 provides greater detail to the blocking process.



Source Code Analysis 138

Figure 4.30: Posting to a Queue From a Task



Source Code Analysis 139

Figure 4.31: Posting to a Queue From a Task

We will digress slightly to describe that process.
xQueueSend puts the TCB for the calling task onto the {WaitingToSend}

list. As detailed in the source code, this operation does not require a mutex on
the list because nothing else can modify it while the scheduler is suspended and
the queue is locked. Since the intent is to block, the queue must be unlocked
and the scheduler resumed so a critical section is entered to prevent anything
else from interrupting these operations.

When the code to resume the scheduler is executed, it is possible that the no
yield was performed. As described earlier, scheduler suspensions can be nested.
If they are, then no yield is performed when a call is made to resume. If that
occurs, the algorithm of Figure 4.31 will force a manual yield. Once the yield is
completed, the task that made this attempt to post to the queue is effectively
blocked.



Source Code Analysis 140

Note that a yield from within a critical section does not affect interrupts in
other tasks. Unlike the nesting of the scheduler, each task keeps its own nesting
depth variable. Interrupts are enabled or disabled on each context switch based
on the status of the I bit in the condition code register so no global variable is
required to share the nesting status between tasks.

When the task becomes unblocked, the scheduler is suspended, the queue is
locked and the critical section is exited whereupon it is immediately re-entered
as indicated in Figure 4.30.

If the queue is not full when the task is resumed, then the requested data
is posted and the variable TxLock is incremented. This variable tracks whether
items were posted or removed from a queue while the queue was locked. It is
necessary because event and ready lists cannot be modified while the queue is
locked.

A successful post is followed by an exit from the critical section (the scheduler
is still suspended) which is then followed by unlocking the queue. When the
queue is unlocked, it is necessary to check to see if there are any tasks waiting
to receive. Figure 4.32 shows the algorithm for unlocking the queue.

To unlock the queue, a critical section is invoked. TxLock is decremented
and checked to see if it is zero. When the queue is locked, TxLock is incremented
by one C therefore, other operations on the queue would only have happened if
TxLock is greater than one. If the decremented TxLock is still greater than zero
(i.e. something modified the queue), then the waiting lists should be checked to
see if a blocked task can be unblocked.

TxLock is set to zero. If tasks are waiting, then the highest priority task
is taken off the list (the TCB for this task would be the head since tasks are
inserted into the list by priority). If the task taken off is higher priority, then it
is necessary to yield to that task C however, the scheduler is not running so a
pending yield is signaled.

The algorithm shown in Figure 4.32 has a similar section for RxLock.
Once the queue is unlocked, the scheduler is resumed and QueueSend returns

PASS to the calling task.
If the queue was full when the task unblocked (refer to Figure 4.30), the

critical section is exited immediately. If the post request was a blocking post
and if the time on the block has not expired and if the queue is full, then the task
that made the call is blocked again. The expiry time of the task is determined
by adding the block time value to the tick time captured when the function was
first invoked. If the current time is less than that value, then the task can block.
Otherwise the operation requested has timed out. The queue is unlocked, the
scheduler is resumed and the function returns an error condition to the parent
task.

4.8.4 Receiving from a Queue C Schedulable Task and
ISR

The descriptions provided for posting to a queue from both a schedulable task
and from within an ISR have equivalent analogues for receiving from a queue.



Source Code Analysis 141

Figure 4.32: Checking for Blocked Tasks On Queue Unlock



Source Code Analysis 142

These operations won’t be covered.



Chapter 5

Summary and Conclusions

FreeRTOS is a small, nominally real-time operating system for embedded de-
vices. It includes traditional preemptive operating system concepts such as dy-
namic priority based scheduling and inter-process communication via message
queues and synchronization mechanisms.

FreeRTOS provides other features that are intended to allow the operating
system to be more flexible to embedded operations. These include cooperative
operation (instead of preemptive), co-routines, and the ability to suspend the
scheduler. This last feature appears to invoke significant overhead for marginal
utility. A scaled version of the FreeRTOS with these features removed might
prove to be more attractive to certain communities.

The insistence on timeouts for each blocking task appears to provide a so-
lution to deadlocks that is commensurate with the level of complexity of the
operating system. Unfortunately, it pushes the problem upwards since the de-
veloper must now pay attention to the problems of assigning and tuning timeouts
and dealing with failed access to resources.

Overall, FreeRTOS is a reasonable - if slightly too complex - attempt at a
real-time operating system for small embedded targets.

We will deal with the formalization issue of FreeRTOS in [Zhu11a, Zhu11b,
Zhu11c].

143



Bibliography

[Bar07] Richard Barry. FreeRTOS, January 2007.

[Goy07] Rich Goyette. An Analysis and Description of the Inner Workings
of the FreeRTOS Kernel. Technical Report SYSC5701: Operating
System Methods for Real-Time Applications, Department of Systems
and Computer Engineering, Carleton University, April 2007.

[Zhu11a] Ming-Yuan Zhu. A Formal Model of FreeRTOS, Volume 1: The
Requirement Specifications. Technical report, CoreTek Systems, Inc.,
2011.

[Zhu11b] Ming-Yuan Zhu. A Formal Model of FreeRTOS, Volume 2: The
Functional Specifications. Technical report, CoreTek Systems, Inc.,
2011.

[Zhu11c] Ming-Yuan Zhu. A Formal Model of FreeRTOS, Volume 3: The
Design Specifications. Technical report, CoreTek Systems, Inc., 2011.

144

View publication statsView publication stats


