Limitation of our timer programs

#include <avr/io.h>

1

2 int main() {

3 uint8_t count=0;

4 DDRB |= (1<<PB1)

5 ASSR |= (1<<AS0);

6 TCCRO |= (1<<CS00); escaling
7 while (1) {

8

while (! (TIFR & (1<<TOV0))){/+Wait until
(1<<TOV0); //clear by writing a one to

ur

AVR Interrupts

TIFR

TOV(

Kizito NKURIKIYEYEZU, countes;
Ph.D .

PORTB "= (1<<PBl);
}

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24,2022 1/13

Limitation of our timer programs What is an interrupt?
m What if we are to generate two delays at the same time? m An interrupt is a way for an external (or, sometimes, internal)
m Example: Toggle bit PB.5 every 1s and PB.4 every 0.5s event to pause the current processor’s activity, so that it can
= What if there are some task to be done simultaneously with complete a brief task before resuming execution where it left
the timers?
m Example: (1) read the contents of port A, process the data, @ﬁmm p—)>
and send them to port D continuously, (2) toggle bit PB.5 -
every 1s, and (3) PB.4 every 0.5s.

FIG 1. Principle of an interrupt

m For example, one can set up the processor so that it is
looking for a specific external event (like a pin going high or a
timer over owing) to become true, while it goes on and
performs other tasks.

m When these even occur, we stop the current task, handle the

event, and resume back the previous tasks.
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 2/13 Kizito NKURIKIYEYEZU, Ph.D.

What is an interrupt? Interrupts vs. polling

m An interrupt is an exception, a change of the normal #include <avr/io.h>

1
progression, or interruption in the normal flow of program 2 int main(void) {
execution. 3 Initialization left out for clarity
m An interrupt is essentially a hardware generated function call. * e () {
. 5 if ((PINB & (1 << SWITCH_PIN)) ==
m Interrupts are caused by both internal and external sources. NOT_PRESSED) ({
= An interrupt causes the normal program execution to halt and Turn off the Led
for the interrupt service routine (ISR) to be executed. 7 PORTB |= (1<<LED_PIN); // Set PBl to
m At the conclusion of the ISR, normal program execution is ~ * }
resumed at the point where it was last. ¢ elss ﬁ s
10 urn on the led
In short, with an interrupt , there is no need for the processor to PORTB &= ~ (1<<LED_PIN); > LOW
monitor the status of the devices and events. Instead, the events , }
notify the processor when they occur by sending an interrupt 1 }
signal to processor 14 return 0;
5}
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 4/13 Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 5/13
Interrupt vs. polling Interrupt vs polling
m Using polling, the CPU must continually check the device's m Polling uses a lot of CPU horsepower
status m checking whether the peripheral is ready or not

m Wait until the peripheral is ready (but wait for how long?)
m interrupts use the CPU only when work is to be done

m Using interrupt:
m A device will send an interrupt signal when needed.

m In response, the CPU will perform an interrupt service routine, m Polled code is generally messy and unstructured
and then resume its normal execution. m big loop with often multiple calls to check and see if peripheral
m Allows low response latency is ready
m Determinism (in many cases anyways!). Determinism is the m necessary to keep peripheral from waiting
consistency of the response time m ISRs concentrate all peripheral code in one place
Polling Interrupt 1 (encapsulation)

Tnterrupt
signal

while ()
get_device status;
12 (service_required) (
service_routine:
)
normal_execution:

m Polled code leads to variable latency in servicing peripherals
m whether if branches are taken or not, timing can vary
m interrupts give highly predictable servicing latencies

[Gnstraction & |

fon K1)

normal_execution

Kizito NKURIKIYEYEZ! AVR Interrupts. October 24, 2022 AVR Interrupts. October 24, 2022

POLLING VERSUS INTERRUPT

Interrupt service routine

m Each interrupt is associated with an interrupt service routine
lar
(ISR)

m When an interrupt is invoked, the microcontroller runs the
interrupt service routine.
Generally, for every interrupt there is a fixed location in
memory that holds the address of its ISR.
m The group of memory locations set aside to hold the
addresses of ISRs is called the interrupt vector
m The group of memory locations set aside to hold the
addresses of ISRs is called the interrupt vector
m You can find the list of all interrupts vectors of an ATmega128
on its datasheet on pages 59-60
m The datasheet also shows the priority levels of the different
interrupts. The lower the address the higher is the priority
level. RESET has the highest priority, and next is INTO — the

xternal Interrynt Req
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 / Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022

Types of interrupts

m Hardware interrupts

TAB 1. Example—Interrupts in ATmega16

1 w0 p— m externally generated

2 sa02 [— .

s soot Externa oerrpt Recuest 1 m frees up CPU from polling

B sa0e TimaeCountert Compare Mach)

s soos TimedC ounter2 Oveton m Software interrupts

. soon TimeeCounert Coptrs Evrt .)

7 soc TimertCounter Compare Match A m generated by CPU instruction

. so0e TimedCountert Compar Match B o ;)))
- i TG omtart Ovatom m on AVR: writing to a pin change interrupt pin configured as
o sorz TimecCounterd Ovacton i i i

» - = output triggers interrupt used to implement system calls
n sate usaRT, s Campiete

n sone USART Data Register Empty

P s USART,Tx Conplee

1 sorc ADC Comvasion Complste

1 sone ecpmoM Resey

" sz

" sz 2o Sl eertaca

" seze Extrnt e Racunst 2

» saze TemaetCouners Compare Mach

n sz Stor Program Memory Ready

AVR Interrupts. izito NKURIKIVEYEZU, Ph.D. AVR Interrupts.

What causes an interrupt an AVR
MCU?

m Timers —there are at least two interrupts for each time: one
for an overflow and another for the compare match

m Interrupts set for external hardware interrupts. For the
ATmega128, the external interrupts are triggered by the
INT7:0 pins.

m Serial communication interrupts

m Serial Peripheral Interface (SPI) interrupts

m Analog-to-digital converter (ADC) interrupts

m etc

Kizito NKURIKIYEYEZU, Ph.D.

AVR Interrupts

October 24,2022 12/13

Why use an interrupt?

m To detect pin changes (eg. rotary encoders, button presses)
m Watchdog timer (eg. if nothing happens after 8 seconds,
interrupt me)

m Timer interrupts - used for comparing/overflowing timers
m ADC conversions (analog to digital)

m EEPROM ready for use

m Flash memory ready

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24,2022 13/13

	The end

