
AVR Interrupts

Kizito NKURIKIYEYEZU,
Ph.D.

Limitation of our timer programs
1 #include <avr/io.h>
2 int main(){
3 uint8_t count=0;
4 DDRB |= (1<<PB1)
5 ASSR |= (1<<AS0); //use ext oscillator
6 TCCR0 |= (1<<CS00); //normal mode, no prescaling
7 while(1) {
8 while (! (TIFR & (1<<TOV0))){/*Wait until

overflow occurs*/}
9 TIFR |= (1<<TOV0); //clear by writing a one to

TOV0
10 count++; //extend counter
11 if((count % 64) == 0){//toggle PB0 every 64

overflows
12 PORTB ^= (1<<PB1);
13 }
14 }
15 }

LISTING 1: This program waste resources by waiting overflow to occur

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 1 / 13

Limitation of our timer programs
What if we are to generate two delays at the same time?

Example: Toggle bit PB.5 every 1s and PB.4 every 0.5s
What if there are some task to be done simultaneously with
the timers?

Example: (1) read the contents of port A, process the data,
and send them to port D continuously, (2) toggle bit PB.5
every 1s, and (3) PB.4 every 0.5s.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 2 / 13

What is an interrupt?
An interrupt is a way for an external (or, sometimes, internal)
event to pause the current processor’s activity, so that it can
complete a brief task before resuming execution where it left

FIG 1. Principle of an interrupt

For example, one can set up the processor so that it is
looking for a specific external event (like a pin going high or a
timer over owing) to become true, while it goes on and
performs other tasks.
When these even occur, we stop the current task, handle the
event, and resume back the previous tasks.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 3 / 13



What is an interrupt?
An interrupt is an exception, a change of the normal
progression, or interruption in the normal flow of program
execution.
An interrupt is essentially a hardware generated function call.
Interrupts are caused by both internal and external sources.
An interrupt causes the normal program execution to halt and
for the interrupt service routine (ISR) to be executed.
At the conclusion of the ISR, normal program execution is
resumed at the point where it was last.

In short, with an interrupt , there is no need for the processor to
monitor the status of the devices and events. Instead, the events
notify the processor when they occur by sending an interrupt
signal to processor

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 4 / 13

Interrupts vs. polling
1 #include <avr/io.h>
2 int main(void){
3 // Initialization code left out for clarity
4 while (1) {
5 if ((PINB & (1 << SWITCH_PIN)) ==

NOT_PRESSED ) {
6 // Turn off the Led
7 PORTB |= (1<<LED_PIN); // Set PB1 to HIGH
8 }
9 else {

10 // Turn on the led
11 PORTB &= ~(1<<LED_PIN); // Set PB1 to LOW
12 }
13 }
14 return 0;
15 }

LISTING 2: Polling keeps check if the switch is pressedKizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 5 / 13

Interrupt vs. polling
Using polling, the CPU must continually check the device’s
status
Using interrupt:

A device will send an interrupt signal when needed.
In response, the CPU will perform an interrupt service routine,
and then resume its normal execution.
Allows low response latency
Determinism (in many cases anyways!). Determinism is the
consistency of the response time

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 6 / 13

Interrupt vs polling
Polling uses a lot of CPU horsepower

checking whether the peripheral is ready or not
Wait until the peripheral is ready (but wait for how long?)
interrupts use the CPU only when work is to be done

Polled code is generally messy and unstructured
big loop with often multiple calls to check and see if peripheral
is ready
necessary to keep peripheral from waiting
ISRs concentrate all peripheral code in one place
(encapsulation)

Polled code leads to variable latency in servicing peripherals
whether if branches are taken or not, timing can vary
interrupts give highly predictable servicing latencies

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 7 / 13



FIG 2

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 8 / 13

Interrupt service routine
Each interrupt is associated with an interrupt service routine
(ISR)
When an interrupt is invoked, the microcontroller runs the
interrupt service routine.
Generally, for every interrupt there is a fixed location in
memory that holds the address of its ISR.
The group of memory locations set aside to hold the
addresses of ISRs is called the interrupt vector
The group of memory locations set aside to hold the
addresses of ISRs is called the interrupt vector
You can find the list of all interrupts vectors of an ATmega128
on its datasheet on pages 59-60
The datasheet also shows the priority levels of the different
interrupts. The lower the address the higher is the priority
level. RESET has the highest priority, and next is INT0 – the
External Interrupt Request 0.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 9 / 13

TAB 1. Example—Interrupts in ATmega16

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 10 / 13

Types of interrupts
Hardware interrupts

externally generated
frees up CPU from polling

Software interrupts
generated by CPU instruction
on AVR: writing to a pin change interrupt pin configured as
output triggers interrupt used to implement system calls

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 11 / 13



What causes an interrupt an AVR
MCU?

Timers —there are at least two interrupts for each time: one
for an overflow and another for the compare match
Interrupts set for external hardware interrupts. For the
ATmega128, the external interrupts are triggered by the
INT7:0 pins.
Serial communication interrupts
Serial Peripheral Interface (SPI) interrupts
Analog-to-digital converter (ADC) interrupts
etc

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 12 / 13

Why use an interrupt?
To detect pin changes (eg. rotary encoders, button presses)
Watchdog timer (eg. if nothing happens after 8 seconds,
interrupt me)
Timer interrupts - used for comparing/overflowing timers
ADC conversions (analog to digital)
EEPROM ready for use
Flash memory ready

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts October 24, 2022 13 / 13

The end


	The end

