Embedded Software
Architectures

Kizito NKURIKIYEYEZU,
Ph.D.

Choosing the best software
architecture

m When designing an embedded software, what is the most
optimum software architecture to use for a given system?
m The best architecture depends on several factors
m Real-time requirements of the application (absolute response
time)
m Available hardware (speed, features)
m Number and complexity of different software features
m Number and complexity of different peripherals
m Relative priority of features
m The decision is based on the tradeoff between complexity
and control over response and priority:
m Systems that require little control and poor response can be
done with simple architectures
m Rapid response systems will require more complex program
design to be successful.
Kizito NKURIKIYEYEZU, Ph.D.

Embedded Software Architectures November 28,2022 2/20

Kizito NKURIKIYEYEZU, Ph.D.

Kizito NKURIKIYEYEZU, Ph.D.

Introduction

m This lecture will discuss various architectures for embedded
software—the basic structures that are used to put together
an embedded system software.

m The best architecture depends on several factors:

m Real-time requirements of the application (absolute response
time)

m Available hardware (speed, features)

m Number and complexity of different software features

m Number and complexity of different peripherals

m Relative priority of features

m Thus, each software architecture is tradeoff between
complexity and control over response and priority

Embedded Software Architectures November 28,2022 1/20

Example 1 —Air conditioning

m This system can be written with a very simple software
architecture.

m The response time can be within a number of tens of
seconds.

m The major function is to monitor the temperature readings
and turn on and off the air conditioner.

= A timer may be needed to provide the turn-on and turn-off
time.

Embedded Software Architectures November 28,2022 3/20

Example 2 —Office telephone with
Speaker

Consider a digital telephone answering machine with speech
compression. It performs the following operations

m Records about 30 minutes
of total voice sampled at
8kHz

m The software design for the
answering machine

m It must respond rapidly to
many different events.

m [t has restrictive and
various processing
requirements.

m |t has different deadlines

Kizito NKURIKIYEYEZU, Ph.D.

Embedded Software Architectures November 28,2022 4120

Basic RT software architectures

= Round-Robin
m Round-Robin with Interrupts

= Real-Time Operating
System

Increasing
Complexity

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28,2022 6/20

Example 2 —Office telephone with
Speaker

Microphone

Line-in

Outgoing Messag

ncoming Mcssag.{

Line-out

Buttons

Lights
Speaker

FIG 1. Simplified class diagram of the office telephone

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28,2022 5/20

Round Robin

Round Robin

m Simplest architecture

k ‘module1 void main(void) {
= No interrupts - while (TRUE) {
ey modulel();

module2();
module3();
moduled();

m Main loop checks each ‘

device one at a time, and ‘\—ﬂmm
service whichever needs to iﬂ)

be serviced.
m Service order depends on FIG 2. Round Robin'

position in the loop.
m No priorities
m No shared data
m No latency issues (other
than waiting for other
Kizito NKURIKIYEYEZU, Ph.D.

Round-Robin architecture—Pros

and cons
Advantages:
m Simple solution, but sufficient for some applications.
m Exchanging data between tasks is easy.
Drawbacks:
m The worst-case latency of an external request is equal to the
execution time of the entire main loop.
m Architecture fails if any one device requires a shorter
response time
m Most I/O needs fast response time (buttons, serial ports, etc.)
m Implementing additional features can adversely affect the
correctness of a system, by increasing latencies beyond
acceptable bounds.
m Architecture is fragile to added functionality: adding one more
device to the loop may break everything

ent in rocearch
November 28, 2022

mbedded soffwara develonm
Embedded Software Architectures

Round Robin Architecture

void main(void) {
while (true) {

if (Device_A_needs_service()) {
Service device A
}
if (Device_B_needs_service()) {
S ce B
}
needs_service ()) {

if (Device_C

device C

=

LisTING 1: Round Robin Architecture

Kizito NKURIKIYEYEZU, Ph.D. November 28,2022 8/20

Example —A digital multimeter
m This uses a round-robin works well for this system because:
m only 3 I/O devices
m no lengthy processing
m no tight response requirements
m small delays in switch position changes will go unnoticed
m No emergency control
m No such requirements
m Users are unlikely to notice the few fractions of a second it
takes for the microprocessor to get around the loop
m Adequate because it is a SIMPLE system!
m Simple devices such as watches, simple microwave ovens,
toys, vending machine etc
m Devices where operations are all user initiated and process
quickly
m Anything where the processor has plenty of time to get around
the loop, and the user won't notice the delay

November 28,2022 10

Embedded Software Architectures

November 28,2022 9/20

Kizito NKURIKIYEYEZ!

Embedded Software Architectures

Embedded Software Architectures

Example —digital multimeter

Jotd voigitaltultinetertiain (void)

enum (OWIS_1, OKHS_10 VOLTS_100) eSwitchPosition;
while (TRUE)

eswitchPosition = // Read te p
suitch (eSwitchposition)

i FIG 3. Digital multi-meter—It is

) o possible to use a round-robin
! architecture because its users cannot
expect faster response than they can
move their hands and the probes

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28,2022 11/20

bin with interrupts

Summary —Round robin
architecture

m This is the simplest architecture devoid of interrupts or
shared-data concerns
m However several problems arise from its simplicity:

m |f a device has a response time constraints this architecture
has problems (e.g. if in the example device Z has a deadline
of 15 ms and A and B take 10 ms each.)

m If any one of the cases at the worst take 5 seconds, the
system would have a max. response time of 5 seconds, which
would make it less appealing.

m Architecture is not robust. Addition of a single device might
cause all deadlines to be missed.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28, 2022 12/20

Round-robin with interrupts

m Allows some control of
software execution

| votd main(vote) (
while (TRUE) (
woduled

nodulen
= I i

m Gives more control over =):: e dls) s
priorities. Leia mer_ssacueia) ¢

m Based on Round Robin, but
interrupts deal with urgent
timing requirements.

m Interrupts a) service
hardware and b) set flags

m Main routine checks flags
and does any lower priority

ira1 do calc - true;

FIG 4. Round robin with interrupts

"Bajer, M. (2014). Embedded software development in research
environment: A practical guide for non-experts. Proceedings - 2014 3rd
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28, 2022 13/20

Round-robin with interrupts Round-robin with interrupts

Principles: Tasks are invoked in round-robin fashion, but interrupt

routines take care of urgent operations " p—
m Alittle bit more control -

m In this architecture, interrupt service routines (ISR) deal with
the very urgent needs of the hardware and set corresponding
method_3()

flags
FIG 5. Round Robin with Interrupts’

L

m Interrupt routines set flags to indicate the interrupt happened
m main while loop polls the status of the interrupt flags and does
any follow-up processing required by a set flag.
m ISR can get good response
m All of the processing that you put into the ISR has a higher
priority than the task code

i

' Automaticaddison, A. (2019, May 6). Round-Robin vs
Function-Queue-Scheduling. Automatic Addison.
https://automaticaddison.com/round-robin-vs-function-queue-scheduling-
embedded-software-architecture/#round_robin

Kizito NKURIKIVEYEZU, Ph.D. Embedded Software Architectures November 26,2022 1420 izito NKURIKIVEYEZU, Ph.D. Embedded Software Architectures November 26,2022 1520
Round-robin with interrupts Round-robin with interrupts—Pro
and cons
s cuts, fomicez fose Advantages
it Round-robin Round-oin N . :
withinterupes m Still relatively simple
High-priority P N
ot procesing m Hardware timing requirements better met
Devce A ISR |
W ot Do BISR Dr L
| Devie C ISR m All task code still executes at same priority
) [(Eening | Device D ISR ’
| — Devce . R ® Maximum delay unchanged
| Devke Z ISR m Worst case response time = sum all other execution times +
Low priiy ATk ol execution times of any other interrupts that occur
procee Possible improvements
- m Change order flags are checked (e.g., A,B,A,B,A,D)
m Improves response of A
) m Increases latency of other tasks
m Move some task code to interrupt
m Decreases response time of lower priority interrupts
May nat he ahla {0 on o lawar nriari inte n ode
Kizito NKURIKIYEYEZU, Ph.D. ERESaR Ao NEARRRGGIea) November 28,2022 1620 Kizito NKURIKIYEYEZU, Ph.D. ERBSERACHNAIAR RasTlies) November 28,2022 17/20

Real Time Operating System
Architecture

m Most complex
m Interrupts signal the need for follow-up tasks
m Instead of a loop deciding what to do next the RTOS decides.
m Interrupts handle urgent operations, then signal that there is
. . more work to do for task code
Real Tl me Opel‘atl ng System m One follow-up task can be suspended by the RTOS in
favoring of performing a higher priority task.
m Differences with previous architectures
m We don't write signaling flags (RTOS takes care of it)
m No loop in our code decides what is executed next (RTOS
does this)
m RTOS knows relative task priorities and controls what is
executed next
m RTOS can suspend a task in the middle to execute code of

hi her priorit
Kizito NKURIKIYEYE: D. Embedded Software Architectures November 28, 2022 18/20
RTOS—Pros and cons Concluswn—Archltecture
Advantages Disadvantages Selectlon
m Task do not disturb others m An RTOS itself needs some m Select the simplest architecture that will meet your response
—This is actually processing time, throughput requirements.
remarkably hard otherwise is affected. m If your response requirements might necessitate using a
m Provices a standard way for ~ m An RTOS used lot of system real-time operating system then that should probably be your
memory protection —if a resources which is not as choice.
process tries to access good m Things rarely get smaller/simpler and its a lot easier to start
memory thatisn'tits own, it w Very few tasks run at the on a more complicated architecture than to migrate to it later
fails. This is probably a fault same time and their when things grew to hairy
and it makes debugging a concentration is restricted to ™ If it makes sense create hybrids
lot easler. few applications to avoid TAB 1. Characteristics of various software architectures
m Built in priority-based errors
scheduling, abstracting m Quality and industrial-level
timing information RTOS are expensive R~

m_Maintainability an
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures November 28, 2022 19/20 Kizito NKURIKIYEYE:

https://www.cs.unc.edu/~anderson/teach/comp790/rtosdb/index.html

	Round Robin
	Round-robin with interrupts
	Real Time Operating System
	The end

