
Embedded Software Fundamentals
How does code get converted into ones and zeroes?

Kizito NKURIKIYEYEZU, Ph.D.



Reading material
1 Oualline, S., (2022). Bare Metal C. New York: No Starch Press.
2 Chapter 1 of White, E. (2011). Making Embedded Systems: Design Patterns

for Great Software. " O’Reilly Media, Inc."

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 1 / 23



Embedded software development

Host Machine
Development Environments
Compiler Toolchain
Debuggers
Development Kits
Version Control

FIG 1. Components of an embedded development

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 2 / 23



Modules of a typical embedded software

The software is organized in layers
Each layer assumes specific
functionality
Modules are described in C-files (.c)
Definitions are described in header
files (.h)
Functions interact with other
modules
Eventually interact with Hardware

FIG 2. Layers of an embedded system software

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 3 / 23



Embedded system software in layers

Device Drivers
Interface to hardware layers
Hardware Abstraction Layer (HAL)

Code Booting
Real-time operation system (RTOS)

Abstracts High from Low levels
Scheduling
Resource management

Libraries for shared code

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 4 / 23



Hardware Abstraction

Low level and bare-Metal Firmware
Hardware Abstraction Layer
Platform Independence
High quality and portable software

Maintainable
Testable
Portable
Robust
Efficient
Consistent

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 5 / 23



Embedded programming languages

FIG 3. Top embedded programming languages
ASPENCORE. (2017). 2017 Embedded Markets Study Integrating IoT and Advanced Technology
Designs, Application Development & Processing Environments. April, 1–102.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 6 / 23



Why C?

Availability of compilers for almost any MCU
Small executable
Deterministic resource use (e.g., no dynamic
memory allocation)
Efficient Memory Management
Timing-centric operations
Direction Hardware/IO Control
Optimized execution
Note: Modern C++ is as efficient as C and I
believe it will slowly replace C in the future.
For details see Kormanyos, C. (2018).
Real-time C++: efficient object-oriented and
template microcontroller programming

FIG 4. C can be used even on very
small micro-controllers
The ATtiny20-UUR is an AVR
micro-controller that is smaller than a
grain of rice. It is an 8-Bit IC that runs at
12MHz 2KB (1K x 16) FLASH and
12-WLCSP (1.56x1.4)

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 7 / 23



Embedded software development
process



FIG 5. Embedded System Development Platform
The host machine contains the build environment for an embedded system. It contains a cross
compiler and a cross debugger. The debug allows communication between the target processor
through a special processor interface, the JTAG

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 8 / 23



FIG 6. Computer and target processor

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 9 / 23



FIG 7. Software tools
The software tools include compiler toolchain (e.g., AVR GCC, gdb make files), linker, emulators,
simulators, SDK, text editors/IDE, version control, etc

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 10 / 23



FIG 8. Detailed embedded C compilation process
The C preprocessor transform the program before actual compilation. The compiler translate the
source code into opcode (object files) for the target processor. The linker combine these object files
and resolve all of the unresolved symbols. The locator assign physical memory addresses to each
of the code and data and produce an output file containing a binary memory image that can be
loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 11 / 23



FIG 9. The role of a preprocessor
The C preprocessor is the macro preprocessor for the C compiler. The preprocessor provides the
ability for the inclusion of header files, macro expansions, conditional compilation, and line control.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 12 / 23



FIG 10. The role of a linker
The linker combines all of objects files into a single executable object code uses symbols to
reference other functions/variables

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 13 / 23



FIG 11. Linear detailed embedded C compilation process
The compiler translate the source code into opcode (object files) for the target processor. The linker
combine these object files and resolve all of the unresolved symbols. The locator assign physical
memory addresses to each of the code and data and produce an output file containing a binary
memory image that can be loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 14 / 23



Code compilation using GNU
Toolsets



A computer only understand a set of instructions in a numeric format, typically
called machine code

1 #include <stdio.h>
2 int main() {
3 printf("Hello, World!");
4 return 0;
5 }

Listing 1. Source code

FIG 12. Machine code

The GCC compiler—The GNU Compiler Collection1—is often used for
compilating embedded system

1https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 15 / 23

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html


A computer only understand a set of instructions in a numeric format, typically
called machine code

1 #include <stdio.h>
2 int main() {
3 printf("Hello, World!");
4 return 0;
5 }

Listing 2. Source code

FIG 12. Machine code

The GCC compiler—The GNU Compiler Collection1—is often used for
compilating embedded system

1https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 15 / 23

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html


The preprocessor

First stage of the compilation
process
Removes all the comments
Include any #include files (typical the
.h header file)
Expands all the macros

1 gcc -E hello.c > hello.i

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 16 / 23



Compilation—Compiles the pre-processed source code into assembly code for
a specific processor

1 gcc -S hello.i

Assembler converts the assembly code into machine code in the object file

1 as -o hello.o hello.s

Linker links the object code with the library code to produce an executable file

1 gcc -O hello.o

Note: You can generate all intermediate files with the following command

1 gcc -save-temps hello.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 17 / 23



Introduction to Build Systems using
AVR GNU Toolsets



Translation of C code into machine code

:0C000000B89A91E088B3892788BBFCCF38
:00000001FF

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18 / 23



Translation of C code into machine code

:0C000000B89A91E088B3892788BBFCCF38
:00000001FF

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18 / 23



Translation of C code into machine code

:0C000000B89A91E088B3892788BBFCCF38
:00000001FF

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18 / 23



Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

1 Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

2 Compilation—the compiler compiles the pre-processed source code into
assembly code for a specific processor.

avr-gcc -S blink.i >blink.s
The -S option specifies to produce assembly code, instead of object code. The
resultant assembly file is "blink.s".

3 Assembly —the assembler (avr-as) converts the assembly code into machine
code in the object file "hello.o".

avr-as -o blink.o blink.s

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19 / 23



Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

1 Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

2 Compilation—the compiler compiles the pre-processed source code into
assembly code for a specific processor.

avr-gcc -S blink.i >blink.s
The -S option specifies to produce assembly code, instead of object code. The
resultant assembly file is "blink.s".

3 Assembly —the assembler (avr-as) converts the assembly code into machine
code in the object file "hello.o".

avr-as -o blink.o blink.s

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19 / 23



Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

1 Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

2 Compilation—the compiler compiles the pre-processed source code into
assembly code for a specific processor.

avr-gcc -S blink.i >blink.s
The -S option specifies to produce assembly code, instead of object code. The
resultant assembly file is "blink.s".

3 Assembly —the assembler (avr-as) converts the assembly code into machine
code in the object file "hello.o".

avr-as -o blink.o blink.s

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19 / 23



Translation of C code into machine code
4 Linker: Finally, the linker links the object code with the library code to produce

an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to extract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c

You can Generate all intermidiate files
avr-gcc -mmcu=attiny13 -save-temps blink.c

You should always enable optimization with the -Os parameter
avr-gcc -v -Os -mmcu=attiny13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20 / 23



Translation of C code into machine code
4 Linker: Finally, the linker links the object code with the library code to produce

an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to extract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c

You can Generate all intermidiate files
avr-gcc -mmcu=attiny13 -save-temps blink.c

You should always enable optimization with the -Os parameter
avr-gcc -v -Os -mmcu=attiny13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20 / 23



Translation of C code into machine code
4 Linker: Finally, the linker links the object code with the library code to produce

an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to extract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c

You can Generate all intermidiate files
avr-gcc -mmcu=attiny13 -save-temps blink.c

You should always enable optimization with the -Os parameter
avr-gcc -v -Os -mmcu=attiny13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20 / 23



Building automation



The need for building automation

Building can be tedious

Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags

Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands

Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets

Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures

Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files

More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file

More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files

How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



The need for building automation

Building can be tedious
Many GCC flags
Many independent commands
Many build targets
Many supported architectures
Many source files

Building manually can cause
consistency issues waste
development time

Real world software is complex. For
example, the Linux kernel contains:

More than 23,000 .c files
More than 18,000 header file
More than 1,400 assembly files
How would you compiler this
manually?

In most cases, one can use an
Integrated development environment
(IDE) to automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21 / 23



Build Management Software

Automated the process of
Preprocessing
Assembling
Compiling
Linking
Relocating
Upload the machine code to the
microcontroller

GNU Toolset performs all operations
using make
Real world make files are complex1,
but are often preferred to using IDE2

1https://www.gnu.org/software/make/manual/html_node/Complex-Makefile.html
2https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000-1.php
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 22 / 23

 https://www.gnu.org/software/make/manual/html_node/Complex-Makefile.html
https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000-1.php


Example make file

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 23 / 23



The end


	Embedded software development process
	Code compilation using GNU Toolsets
	Introduction to Build Systems using AVR GNU Toolsets
	Building automation
	The end

