Qualcomm WCD9380
Audio Codec

Qorvo QM77040 Qualcomm Qualcomm QPM6585 Qualcomm PM8250 Qualcomm QCA6391
PMIC

QDM2310 FEM PAM (Band N41) Wi-Fi 6/BT 5.1 Wireless Combo SoC

Qorvo QM77032 Qualcomm QPM5677 Qualcomm QPMS679 Qualcomm PM81508
FEM PAM (Band N77/78) (Band N79) PMIC

Qualcomm QPMS677
PAM (Band N77/78)

Embedded Software Fundamentals

How does code get converted into ones and zeroes?

Kizito NKURIKIYEYEZU, Ph.D

Reading material
Qualline, S., (2022). Bare Metal C. New York: No Starch Press.

Chapter 1 of White, E. (2011). Making Embedded Systems: Design Patterns
for Great Software. " O’Reilly Media, Inc."

|
BARE METALC

Making
Embedded

Systems

O'REILLY" Elecia White

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 1/23

Embedded software development

m Host Machine

m Development Environments "P‘C*(B)d"’“”

m Compiler Toolchain Host Machine
m Debuggers f@?'_’-""mlv
m Development Kits L ,)

m Version Control Software Engineer's Tools

FIG 1. Components of an embedded development

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 2/23

Modules of a typical embedded software

m The software is organized in layers o
ien evice N nrf_write_reg() nrf_read_reg()
m Each layer assumes specific specific { £ l L r ¢
functionality - ' _
. . . o spi_write_n() spi_read_n()
m Modules are described in C-files (.c) 3| |
m Definitions are described in header "™ N izl
files (h) ‘é set_pin() L l
m Functions interact with other S Rl et -—
ardware SPI Peripheral Module
modules H Ljyer { p
GPIO Hardware

m Eventually interact with Hardware
FIG 2. Layers of an embedded system software

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 3/23

Embedded system software in layers

m Device Drivers

m Hardware Abstraction Layer (HAL) _

m Interface to hardware layers

m Code Booting Middleware Libs
m Real-time operation system (RTOS)

m Abstracts High from Low levels Operating System

m Scheduling

m Resource management
m Libraries for shared code

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 4/23

Hardware Abstraction

m Low level and bare-Metal Firmware
m Hardware Abstraction Layer

m Platform Independence

m High quality and portable software

m Maintainable Bare- spi_write_n() spi_read_n()

m Testable Firmare 2 | |

m Portable § set_pin() spi_write() spi_read()

m Robust e e - -
|| EfflCIent Hardware 1 SPI Peripheral Module

m Consistent Layer GPIO Hardware

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 5/23

Embedded programming languages
c I se%

., I 2

19%
M 2%
3%

66%

Assembly language
3%
Python .
v 2%

Java I 2%
%

o
LabVIEW I 2%
1%

B2
2% 2017 (N = 880)

I 2% 2015 (N = 1,217)
1%
| 1%

C#
MATLAB

JavaScript
FIG 3. Top embedded programming languages

ASPENCORE. (2017). 2017 Embedded Markets Study Integrating loT and Advanced Technology
Designs, Application Development & Processing Environments. April, 1—-102.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 6/23

Why C?

m Availability of compilers for almost any MCU

m Small executable

m Deterministic resource use (e.g., no dynamic

memory allocation)

m Efficient Memory Management

m Timing-centric operations

m Direction Hardware/IO Control

m Optimized execution

m Note: Modern C++ is as efficient as C and |
believe it will slowly replace C in the future.
For details see Kormanyos, C. (2018).
Real-time C++: efficient object-oriented and
template microcontroller programming

Kizito NKURIKIYEYEZU, Ph.D.

Embedded Software Fundamentals

FIG 4. C can be used even on very
small micro-controllers

The ATtiny20-UUR is an AVR
micro-controller that is smaller than a
grain of rice. It is an 8-Bit IC that runs at
12MHz 2KB (1K x 16) FLASH and
12-WLCSP (1.56x1.4)

September 19, 2022 7/23

Embedded software development
process

Print Circuit Board (PCB)

Processor(s)
) Power
Host Machine
Internal
-
Tools xterna
Hardware
\ J
|

Software Engineer’s Tools

FIG 5. Embedded System Development Platform
The host machine contains the build environment for an embedded system. It contains a cross

compiler and a cross debugger. The debug allows communication between the target processor
through a special processor interface, the JTAG

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 8/23

Your Computer

Cross compiler
and linker
~y Processor
Object fle Load code to processor %
for processor r{ Code space l
Cross Debugger Debugii :
g interface f HW support for debugging]
- Stop and step through code |« >
- Look at variables (JTAG) l (Limited resources)
- Reset processor)
Serial Running SW outputs
I Serial port terminal i< Debug messages

FIG 6. Computer and target processor

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 9/23

Source Files usually

mostly in High Level Compiler :Toolchaln

Languages Architecture Specific
Software Tools Machine Code
\4

*c _ Compiler _ Executable
*.h " Toolchain : File

H

i Version Executable

------------- IDE

Control Loader

FIG 7. Software tools
The software tools include compiler toolchain (e.g., AVR GCC, gdb make files), linker, emulators,
simulators, SDK, text editors/IDE, version control, etc

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 10/23

U+ UC++ | Assembly |
v v
Object | Object | Object |

— =

Relocatable

Executable I

FIG 8. Detailed embedded C compilation process

The C preprocessor transform the program before actual compilation. The compiler translate the
source code into opcode (object files) for the target processor. The linker combine these object files
and resolve all of the unresolved symbols. The locator assign physical memory addresses to each
of the code and data and produce an output file containing a binary memory image that can be
loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 11/23

c/.h

— Preprocessor

Source Files

Compiler (gcc)t

:I_‘

*

Preprocessed Files

FIG 9. The role of a preprocessor
The C preprocessor is the macro preprocessor for the C compiler. The preprocessor provides the
ability for the inclusion of header files, macro expansions, conditional compilation, and line control.

Kizito NKURIKIYEYEZU, Ph.D.

Compiler
Proper

Output with —E
option

Embedded Software Fundamentals

.
To Linker

L >

Object Files

t =The preprocessor
is bundled with the
compiler

September 19, 2022 12/23

Linker File Input “."th -T
Cannot be executed option
main.o memory.o i .
main.o - memory.o Liking and Locating (Id)
01101010 11001000
10101110 | 01101001 _ Relocatable
10111000 01011011 Linker | File > Locator —— Executable
10101000 00111101

Invoke the linker indirectly from $ gcc -0 main.out main.c
compiler (and with no options) gee ® ®

FIG 10. The role of a linker
The linker combines all of objects files into a single executable object code uses symbols to

reference other functions/variables

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 13/23

.c/.h —> Preprocessor

Source Files

Preprocessed Files

Compiler
Proper

:

Assembly Files

*s

il_‘

—— Assembler

*.0

I

Object Files

Linker

—

Relocatable
File

—> Locator —

FIG 11. Linear detailed embedded C compilation process
The compiler translate the source code into opcode (object files) for the target processor. The linker
combine these object files and resolve all of the unresolved symbols. The locator assign physical
memory addresses to each of the code and data and produce an output file containing a binary
memory image that can be loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D.

Embedded Software Fundamentals

Executable

September 19, 2022

14/23

Code compilation using GNU
Toolsets

m A computer only understand a set of instructions in a numeric format, typically
called machine code

1 #include <stdio.h>

2 int main () {

3 printf ("Hello, World!");
4 return 0;

5 }

Listing 1. Source code

Thttps://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 15/23

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

m A computer only understand a set of instructions in a numeric format, typically
called machine code

CF FA ED FE 07 00 00 01 03 00 00 00 02 00 00 00
10 00 00 00 58 05 00 00 85 00 20 00 00 00 00 00
19 00 00 00 48 00 00 00 5F 5F 50 41 47 45 5A 45
52 4F 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 #include <stdio.h> 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
2 int main () { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
s printf("Hello, World!"); 00 00 00 00 00 00 00 00 19 00 00 00 DS 01 00 00
5F 5F 54 45 58 54 00 00 00 00 00 00 00 00 00 00

4 return 0; 00 00 00 00 01 00 00 00 00 40 00 00 00 00 00 00
5 } 00 00 00 00 00 00 00 00 00 40 00 00 00 00 00 00
05 00 00 00 05 00 00 00 05 00 00 00 00 00 00 00

Listing 2. Source code 5F 5F 74 65 78 74 00 00 00 00 00 00 00 00 00 00

5F 5F 54 45 58 54 00 00 00 00 00 00 00 00 00 00

FIG 12. Machine code

m The GCC compiler—The GNU Compiler Collection'—is often used for
compilating embedded system

Thttps://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 15/23

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

The preprocessor

m First stage of the compilation

Preprocessing | Step 1: Preprocessor (cpp)
pI’OCGSS Include Header, Expand Macro (.1, -ii)|,
Compilation | Step 2: Compiler (gcc, g++)
m Removes all the comments sembly Code)]
Assemble Step 3: Assembler (as)
. . . Machine Code (.o, -obj){,
m Include any #include files (typical the T VR
. Executable Machine Code (.exe)
.h header file) '

m Expands all the macros

1 gcc —-E hello.c > hello.i

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 16/23

m Compilation—Compiles the pre-processed source code into assembly code for
a specific processor

1 gcc —-S hello.i

m Assembler converts the assembly code into machine code in the object file

1 as —-o hello.o hello.s

m Linker links the object code with the library code to produce an executable file

1 gcc -0 hello.o

m Note: You can generate all intermediate files with the following command

1 gcc —-save-temps hello.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 17/23

Introduction to Build Systems using
AVR GNU Toolsets

Translation of C code into machine code

#include <avr/io.h>
int main (void){
DDRB |= _BV(DDBO);
while(1l) {
PORTB "= BV(PB0);
_delay_ms(500);
}

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18/23

Translation of C code into machine code

#include <avr/io.h>

int main (void){ *c | _ Compilation o
DDRB |= _BV(DDBO); ol Proper '
while(1l) {

PORTB "= _BV(PBO0);

_delay_ms(500);
}

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18/23

Translation of C code into machine code

:0C000000B89A91E088B3¢€
:00000001FF

#include <avr/io.h>
int main (void){ *c | _ Compilation o
DDRB |= _BV(DDBO); i Ricper

while(1l) {
PORTB "= _BV(PBO0);
_delay_ms(500);
}

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 18/23

Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19/23

Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

Compilation—the compiler compiles the pre-processed source code into
assembly code for a specific processor.

avr-gcc -S blink.i >blink.s

The -S option specifies to produce assembly code, instead of object code. The
resultant assembily file is "blink.s".

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19/23

Translation of C code into machine code
GCC compiles a C/C++ program into executable in 4 steps:

Pre-processing—via the AVR GNU C Preprocessor (avr-cpp), which includes
the headers (#include) and expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded source code.

Compilation—the compiler compiles the pre-processed source code into
assembly code for a specific processor.

avr-gcc -S blink.i >blink.s

The -S option specifies to produce assembly code, instead of object code. The
resultant assembily file is "blink.s".

Assembly —the assembler (avr-as) converts the assembly code into machine
code in the object file "hello.o".

avr-as -o blink.o blink.s

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 19/23

Translation of C code into machine code
Linker: Finally, the linker links the object code with the library code to produce
an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to exiract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

m You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny 13 -o blink.bin blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20/23

Translation of C code into machine code
Linker: Finally, the linker links the object code with the library code to produce
an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to exiract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

m You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c

m You can Generate all intermidiate files
avr-gcc -mmcu=attiny 13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20/23

Translation of C code into machine code
Linker: Finally, the linker links the object code with the library code to produce
an executable and linkable format (.elf) file "blink.elf".
avr-gcc blink.o -o blink.elf

This generates an .elf file isn’t directly executable by the MCU. Thus, one
needs to exiract the machine code from it in the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

m You can see the detailed compilation process by enabling -v (verbose) option.
For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c
m You can Generate all intermidiate files
avr-gcc -mmcu=attiny13 -save-temps blink.c
m You should always enable optimization with the -Os parameter
avr-gcc -v -Os -mmcu=attiny 13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 20/23

Building automation

The need for building automation

m Building can be tedious

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious
m Many GCC flags

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious

m Many GCC flags
m Many independent commands

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious

m Many GCC flags
m Many independent commands
m Many build targets

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious

m Many GCC flags

m Many independent commands
m Many build targets

m Many supported architectures

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious

Many GCC flags

Many independent commands
Many build targets

Many supported architectures
Many source files

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious
m Many GCC flags
m Many independent commands
m Many build targets
Many supported architectures
m Many source files

m Building manually can cause
consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands
m Many build targets

Many supported architectures

m Many source files

m Building manually can cause
consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files

m Many build targets
Many supported architectures
m Many source files

m Building manually can cause
consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures

m Many source files

m Building manually can cause
consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures m More than 1,400 assembly files

m Many source files

m Building manually can cause
consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures m More than 1,400 assembly files
m Many source files m How would you compiler this

. . f?
m Building manually can cause manually*

consistency issues waste
development time

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures m More than 1,400 assembly files
m Many source files m How would you compiler this
m Building manually can cause manually?
consistency issues waste m |In most cases, one can use an
development time Integrated development environment

(IDE) to automate this process.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures m More than 1,400 assembly files
m Many source files m How would you compiler this
m Building manually can cause manually?
consistency issues waste m |In most cases, one can use an
development time Integrated development environment

(IDE) to automate this process.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

The need for building automation

m Building can be tedious m Real world software is complex. For
m Many GCC flags example, the Linux kernel contains:
m Many independent commands m More than 23,000 .c files
m Many build targets m More than 18,000 header file
m Many supported architectures m More than 1,400 assembly files
m Many source files m How would you compiler this
m Building manually can cause manually?
consistency issues waste m |In most cases, one can use an
development time Integrated development environment

(IDE) to automate this process.

Why use an automatic build system?

Build Management Software (or Build Automation) provides a simple and consis-
tent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 21/23

Build Management Software

m Automated the process of

N avr-gec

m Preprocessing sourcecode ()| L)L (compile)) (| Oblectile
m Assembling <
m Compiling COMPILE PROCESS) G| system Libaris
m Linking 0
m Relocating Ny
. HEX data =] C rogram
m Upload the machine code to the |
microcontroller v
. avrdude
m GNU Toolset performs all operations o))| e
using make

m Real world make files are complex’,
but are often preferred to using IDE2

1 https://www.gnu.org/software/make/manual/html|_node/Complex- Makefile.html
2https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000—1 .php
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 22/23

 https://www.gnu.org/software/make/manual/html_node/Complex-Makefile.html
https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000-1.php

Example make file

FILENAME = blink

PORT = /dev/cu.usbserial-00000000
DEVICE = attinyl3

PROGRAMMER = arduino

BAUD = 115200

COMPILE = avr-gcc -Wall -Os -mmcu=$(DEVICE)

default: compile upload clean

compile:
$(COMPILE) -c $(FILENAME).c -o $(FILENAME).o
$(COMPILE) -o $(FILENAME).elf $(FILENAME).o
avr-objcopy -j .text -j .data -0 ihex $(FILENAME).elf $(FILENAME).hex
avr-size --format=avr --mcu=$(DEVICE) $(FILENAME).elf

upload:
avrdude -v -p $(DEVICE) -c $(PROGRAMMER) -P $(PORT) -b $(BAUD) -U flash:w:$(FILEN

clean:
rm $(FILENAME).o
rm $(FILENAME).elf
rm $(FILENAME).hex

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals September 19, 2022 23/23

The end

	Embedded software development process
	Code compilation using GNU Toolsets
	Introduction to Build Systems using AVR GNU Toolsets
	Building automation
	The end

