
Bit Twiddling

Kizito NKURIKIYEYEZU, Ph.D.



Reading material
1 Bit manipulation (AKA "Programming 101")1

2 Chap 4 of Williamson, E. (2014). Make: Avr programming. Maker Media2.
3 AVR Bit Manipulation in C3

4 Bitwise Operations in Embedded Programming4

1https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
2https://apprize.best/hardware/avr/5.html
3http://www.rjhcoding.com/avrc-bit-manip.php
4https://binaryupdates.com/bitwise-operations-in-embedded-programming/
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 1 / 13

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
https://apprize.best/hardware/avr/5.html
http://www.rjhcoding.com/avrc-bit-manip.php
https://binaryupdates.com/bitwise-operations-in-embedded-programming/


Why bit twiddling?
When setting PORTs and DDRs, one needs to be careful not to disturb the
state of other bits of the register.
For example, the following code attempts to set pin 2 of PORTD

DDRD |= 0b00000100;

Unfortunately, this code also clears all other bits of PORTD
Bit twiddling allows not to set all 8 bits in register PORT without regard for the
directions of each individual pin, i.e. all the bits stored in DDR
For example, the above example could be best solved as follows

DDRD = DDRD | (1<<2);
/*which can also be written as*/
DDRD |= (1<<2);

Please read “Programming 101 - By Eric Weddington”5 for more details.

5https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 2 / 13

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all


Bit Shifting
Bit shifting—a bitwise operator that allows to move (to the left or right) the
order of one or several bits
Bit-shifting is very fast and required fewer CPU operations compared to
arithmetic (e.g., multiplication and division) operations.
Bit shifting uses Bitwise Operators6

FIG 1. Example of Bitwise operations

6https://en.wikipedia.org/wiki/Bitwise_operation
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 3 / 13

https://en.wikipedia.org/wiki/Bitwise_operation


Bit Shifting
There are three main types of shifts:

Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.

The left shift operator is usually written as <<

(0010 << 1)=0100 /*(2<<1)=4*/
(0010 << 2)=1000 /*(2<<2)=8*/

Right Shifts—When shifting right with an arithmetic right shift, the
least-significant bit is lost and the most-significant bit is copied.

The right shift operator is usually written as >>

(1011 >> 1)=1101 /*(11>>1)=5 */
(1011 >> 3)=0001 /*(11>>3)=1 */

Logical Right Shifts—When shifting right with a logical right shift, the
least-significant bit is lost and a 00 is inserted on the other end.

(1011 >>> 1)=0101
(1011 >>> 3)=0001

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 4 / 13



Bit Shifting
There are three main types of shifts:

Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.

The left shift operator is usually written as <<

(0010 << 1)=0100 /*(2<<1)=4*/
(0010 << 2)=1000 /*(2<<2)=8*/

Right Shifts—When shifting right with an arithmetic right shift, the
least-significant bit is lost and the most-significant bit is copied.

The right shift operator is usually written as >>

(1011 >> 1)=1101 /*(11>>1)=5 */
(1011 >> 3)=0001 /*(11>>3)=1 */

Logical Right Shifts—When shifting right with a logical right shift, the
least-significant bit is lost and a 00 is inserted on the other end.

(1011 >>> 1)=0101
(1011 >>> 3)=0001

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 4 / 13



Bit Shifting
There are three main types of shifts:

Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.

The left shift operator is usually written as <<

(0010 << 1)=0100 /*(2<<1)=4*/
(0010 << 2)=1000 /*(2<<2)=8*/

Right Shifts—When shifting right with an arithmetic right shift, the
least-significant bit is lost and the most-significant bit is copied.

The right shift operator is usually written as >>

(1011 >> 1)=1101 /*(11>>1)=5 */
(1011 >> 3)=0001 /*(11>>3)=1 */

Logical Right Shifts—When shifting right with a logical right shift, the
least-significant bit is lost and a 00 is inserted on the other end.

(1011 >>> 1)=0101
(1011 >>> 3)=0001

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 4 / 13



Controlling Memory-Mapped I/O
Registers Using Bit Operations



Setting Bits with the OR operator
Consider the diodes in Figure 4 and Figure 57

How would you turn on LED1 while
other LEDs are turned off?

/*set the pin as an output*/
DDRB |= (1<<PBO);
/*set the bit PBO as high*/
PORTB |=(1<<PBO);

How would you turn on only LED2
and LED3 and leave out other LEDs
in their previous state?

PORTB &= ~((1<< PB1) | (1<<
PB2));

FIG 2

FIG 3
7http://www.rjhcoding.com/avrc-bit-manip.php
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 5 / 13

http://www.rjhcoding.com/avrc-bit-manip.php


Clearing a bit with AND and NOT operators
How to turn OFF LED 1 only

/*Set PBO to low*/
PORTB &=~(1<<PBO);

How would you turn OFF only LED2
and LED3 and leave out other LEDs
in their previous state?

PORTB &=~(1<<PB1) |(1<<PB2);

NOTE: There is a NOT outside the
parentheses in order to have two zeros

FIG 4

FIG 5

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 6 / 13



Toggling Bits with XOR operator
How to toggle OFF LED 1 only

PORTB ^=(1<<PBO);

How to toggle only LED2 and LED3
and leave out other LEDs in their
previous state?

PORTB ^=((1<<PB1)|(1<<PB2));

Noted:
Don’t forget to set direction of pins
first! else, the pin will not be set
Remember if pins are configured as
inputs (DDRBn bit is 0) then the
corresponding bit in PORTBn sets
the pull-up status

FIG 6

FIG 7

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 7 / 13



Testing a Bit

Suppose we need to know if the
switch S1 is pressed
We use the PIN register to know the
content of the PORT

int status=(PINB &(1<<PB));
if(status){

// If the switch is pressed
}

You can also check multiple switches

int status=PINB &((1<<PB4) |
(1<<PB5));

if(status){
// If any of the switches is

pressed
}

FIG 8

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 8 / 13



AVR bit twiddling
TAB 1. Important bit-twiddling operations.

Important readings:
Please read the document—which is uploaded on the course website—entitled
’AVR Bit Twiddling’ to better understand this important topic.
You should also read “Bit manipulation” by By Eric Weddington 8

8https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 9 / 13

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all


Special bit twiddling AVR functions
One can use the _BV(x) macro defined in avr/sfr _defs.h which is included through
avr/io.h as #define _BV(x) (1«x)

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 10 / 13



Software Delay Functions
AVR GCC compiler’s util/delay.h defines the _delay_ms(double ms) function

Requires # include <util/delay.h >
F_CPU preprocessor symbol should be defined as MCPU frequency in Hz
using #define or passed through the -D compiler option

In code: #define F_CPU 8000000UL //8 MHz clock
Command line option: -D F_CPU=8000000UL

The maximum delay is calculated as

delay =
4294967.295 · 106

F_CPU
(1)

Thus, for an 8MHz clock, the maximum delay would be

delay =
4294967.295 · 106

8 · 106 = 536871ms (2)

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 11 / 13



Example: blink an LED

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 12 / 13



Example: Reading switch

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 13 / 13



The end


	Controlling Memory-Mapped I/O Registers Using Bit Operations
	The end

