Qualcomm WCD9380
Audio Codec

Qorvo QM77040 Qualcomm Qualcornm QPM6585 Qualcomm PMB250 Qualcomm QCA6391
PMIC

QDM2310 FEM PAM (Band N41) Wi-Fi 6/BT 5.1 Wireless Combo SoC

Qorvo QM77032 Qualcomm QPM5677 Qualcomm QPMS679 Qualcomm PM81508
PAM (BandN77/78) (Band N79) PMIC

Qualcomm QPMS677
PAM (Band N77/78)

Bit Twiddling
Kizito NKURIKIYEYEZU, Ph.D.

Reading material

Bit manipulation (AKA "Programming 101"’

Chap 4 of Williamson, E. (2014). Make: Avr programming. Maker Media?.
AVR Bit Manipulation in C®

Bitwise Operations in Embedded Programming*

----- e,

;Make: =

AVR Programming

are for Hardware

'https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
2https://apprize.best/nardware/avr/5.html

3http://www.rjhcoding.com/avre-bit-manip.php
“https://binaryupdates.com/bitwise-operations-in-embedded-programming/

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 1/13

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all
https://apprize.best/hardware/avr/5.html
http://www.rjhcoding.com/avrc-bit-manip.php
https://binaryupdates.com/bitwise-operations-in-embedded-programming/

Why bit twiddling?
m When setting PORTs and DDRs, one needs to be careful not to disturb the
state of other bits of the register.

m For example, the following code attempts to set pin 2 of PORTD
DDRD |= 0b00000100;

m Unfortunately, this code also clears all other bits of PORTD

m Bit twiddling allows not to set all 8 bits in register PORT without regard for the
directions of each individual pin, i.e. all the bits stored in DDR
m For example, the above example could be best solved as follows

DDRD = DDRD | (1<<2);
/*which can also be written asx/
DDRD |= (1<<2);

m Please read “Programming 101 - By Eric Weddington™ for more details.

Shttps://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 PAR K]

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all

Bit Shifting
m Bit shifting—a bitwise operator that allows to move (to the left or right) the
order of one or several bits
m Bit-shifting is very fast and required fewer CPU operations compared to
arithmetic (e.g., multiplication and division) operations.
m Bit shifting uses Bitwise Operators®

Operator Name Example Result
& Bitwise AND 68&3 2

I Bitwise OR 10|10 10

A Bitwise XOR 212 0

~ Bitwise 1's complement | ~9 -10

<< Left-Shift 10<<2 40

>> Right-Shift 102 2

FIG 1. Example of Bitwise operations

6 al al * alal ALLK ALLK A |
Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 3/13

https://en.wikipedia.org/wiki/Bitwise_operation

Bit Shifting
There are three main types of shifts:
m Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.
m The left shift operator is usually written as <<
(0010 << 1)=0100 /*(2<<1)=4x%/
(0010 << 2)=1000 /% (2<<2)=8x/

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 4/13

Bit Shifting
There are three main types of shifts:
m Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.
m The left shift operator is usually written as <<
(0010 << 1)=0100 /*(2<<1)=4x%/
(0010 << 2)=1000 /% (2<<2)=8x/

m Right Shifts—When shifting right with an arithmetic right shift, the
least-significant bit is lost and the most-significant bit is copied.
m The right shift operator is usually written as >>

(1011 >> 1)=1101 /x(11>>1)=5 */
(1011 >> 3)=0001 /x (11>>3)=1 */

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022

Bit Shifting
There are three main types of shifts:
m Left Shifts—When shifting left, the most-significant bit is lost, and a 0 bit is
inserted on the other end.
m The left shift operator is usually written as <<
(0010 << 1)=0100 /*(2<<1)=4x%/
(0010 << 2)=1000 /% (2<<2)=8x/

m Right Shifts—When shifting right with an arithmetic right shift, the
least-significant bit is lost and the most-significant bit is copied.
m The right shift operator is usually written as >>

(1011 >> 1)=1101 /x(11>>1)=5 */
(1011 >> 3)=0001 /x (11>>3)=1 */

m Logical Right Shifts—When shifting right with a logical right shift, the
least-significant bit is lost and a 00 is inserted on the other end.

(1011 >>> 1)=0101
(1011 >>> 3)=0001

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 4/13

Controlling Memory-Mapped 1/O
Registers Using Bit Operations

Setting Bits with the OR operator

Consider the diodes in Figure 4 and Figure 5’

m How would you turn on LED1 while
other LEDs are turned off?

/+xset the pin as an outputx/
DDRB |= (1<<PBO);
/*set the bit PBO as highx/
PORTB |=(1<<PBRO) ;

m How would you turn on only LED2

and LED3 and leave out other LEDs WT w g
in their previous state?

>SAREF/PBO
PORTB &= ~ ((l<< PB1l) | (1<< oz

u1
ATtiny85-20PU XTALL/PB3

PB2)); REStt mos

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 5/13

http://www.rjhcoding.com/avrc-bit-manip.php

Clearing a bit with AND and NOT operators

m How to turn OFF LED 1 only

/*Set PBO to lowx/ Bt
PORTB &=~ (1<<PBO) ;

...........

wssssesedoccdocclos

m How would you turn OFF only LED2
and LED3 and leave out other LEDs
in their previous state?

PORTB &=~ (1<<PB1l) | (1<<PB2);

NOTE: There is a NOT outside the J M
parentheses in order to have two zeros e
ATtinyES—Zoga XTALl/:gg
XTAL2/PB4

RESET/PB5S

September 25, 2022 6/13

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling

Toggling Bits with XOR operator

m How to toggle OFF LED 1 only

PORTB "= (1<<PBO) ;

m How to toggle only LED2 and LED3

and leave out other LEDs in their
previous state?

PORTB "= ((1<<PB1l) | (1<<PB2));

Noted:
m Don’t forget to set direction of pins ””T/
first! else, the pin will not be set . .
m Remember if pins are configured as T
inputs (DDRBnN bit is 0) then the

corresponding bit in PORTBnN sets
the pull-up status

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 7/13

Testing a Bit

m Suppose we need to know if the
switch S1 is pressed

m We use the PIN register to know the
content of the PORT

int status=(PINB & (1<<PB));
if (status) {

// If the switch is pressed
}

m You can also check multiple switches

int status=PINB & ((1<<PB4) |
(1<<PBY5)) ;

if (status) {

// If any of the switches is
pressed

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling

+5V

(%)

>U
AREF/PBO
PB1
PB2
XTAL1/PB3
XTAL2/PB4
RESET/PB5

GND

]

FIG 8

September 25, 2022

8/13

AVR bit twiddling

TAB 1. Important bit-twiddling operations.

Operation Implementation in C Implication
Set a bit PORTB |= (1<<PB1) Bit PB1 is set to 1 (other pins are left unchanged)
Clear bit PORTB &= ~(1<<PB1) Bit PB1 is set to O (other pins are left unchanged)
Toggle a bit PORTB "= (1<<PB1) If Bit PB1 was 1, it is toggled to 0. Otherwise, it is set to 1 (other

pins are left unchanged)

Read avalue | uint8_t bit = PORTB & | Read and put the value of bit PB1 of PORTB into the variable
bit (1<< PB1) bit. This is used to read switches.

Important readings:

m Please read the document—which is uploaded on the course website—entitled
'AVR Bit Twiddling’ to better understand this important topic.

m You should also read “Bit manipulation” by By Eric Weddington &

8https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page-=all

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 9/13

https://www.avrfreaks.net/forum/tut-c-bit-manipulation-aka-programming-101?page=all

Special bit twiddling AVR functions
One can use the _BV(x) macro defined in avr/sfr _defs.h which is included through
avr/io.h as #define _BV(x) (1«x)

DDRD &= ~_BV(@); //set PORTD pin@ to zero as
input
PORTD |= _BV(@); //Enable pull up;
DDRD |= _BV(1); //set PORTD pinl to one as output
PORTD |= _BV(1); //led ON
while (1) {
if (bit_is_clear(PIND, 0)) {
//1if button is pressed
while (1) {
PORTD &= ~_BV(1); //turn the led OFF
//LED OFF while Button is pressed
loop_until_bit_is_set(PIND, 0);
PORTD |= _BV(1); //turn the led ON

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022

Software Delay Functions
AVR GCC compiler’s util/delay.h defines the _delay_ms(double ms) function
m Requires # include <util/delay.h >

m F_CPU preprocessor symbol should be defined as MCPU frequency in Hz
using #define or passed through the -D compiler option

m In code: #define F_CPU 8000000UL //8 MHz clock
m Command line option: -D F_CPU=8000000UL

m The maximum delay is calculated as

4294967.295 - 10°
delay = F CPU

m Thus, for an 8MHz clock, the maximum delay would be

106
delay = 42949:?'12;5 10° _ 536871ms (2)

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022

Example: blink an LED

#define F_CPU 8000000UL — G\
#include <avr/io.h> —
#include <util/delay.h>
int main(void) 3V
{
//Set all pins of DDR3 as output VCC
DDRD = DDRD | (1<<3);
while(1)

{ P
//Turn on the LED by making pin PD3 high LED ! ’

PORTD = PORTD | (1<<3);
// Wait one second
_delay ms(1000);

// Turn of the LED by making pin PD3 low 4700 ATmega16
PORTD = PORTD & (~(1<<3)); PD3
_delay ms(1000); J\/\/\!
}
return 0;
}
GND

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 12/13

Example: Reading switch

#include <avr/io.h> 15 _
#include <util/delay.h> ['] L
int main(void) { N St =
//Set PCO as Output o bl repnek [.
DDRC I= (1 << PC@); Lo weEs “
//Set PDO as an input ”Elu' %Eﬁzﬁééz ;gfy;;g_‘;i
DDRD &= "-'(l << PDO), 2 SR ot iiﬁmgs ,E%?:’,:E?z g;; []ig
while (1) { L T7) qE =R
//Turns OFF LED Hetes s
PORTC &= ~(1 << PCO); s s el

//If switch is pressed L
if (PIND & (1 << PD@) == 1) {
//Turns ON LED for one second
PORTC |= (1 << PC@);
_delay_ms(1000);
}
}

Kizito NKURIKIYEYEZU, Ph.D. Bit Twiddling September 25, 2022 13/13

The end

	Controlling Memory-Mapped I/O Registers Using Bit Operations
	The end

