EPE2165—Exam #2

August 10, 2022

1. (20 points) The NMOS transistor in Figure 1 has a threshold voltage $V_t = 0.7V$, $\mu_n Cox = 100 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $W = 32 \,\mu\text{m}$. If the channel-length modulation effect is neglected, calculate the value of R_D and R_S so that the transistor operates with a current $I_D = 0.4 \,\text{mA}$ at a voltage $V_D = 0.5V$.

Solution:

• The resistor R_D can be calculated with

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2.5V - 0.5V}{0.4} = 5\,\mathrm{k}\Omega\tag{1}$$

• The resistor R_S is determined from Equation (2)

$$R_S = \frac{V_S - V_{SS}}{I_D} \tag{2}$$

 V_S is unknown at this point. However, it can be computed from V_{GS} and V_{OV} since the transistor is operating in the saturation region (i.e., because $V_D > V_G$). In saturation, the current I_D is given by Equation (3)

$$I_D = \frac{1}{2}\mu_n Cox \frac{W}{L} V_{OV}^2 \tag{3}$$

Consequently, substituting with the known constants, we get (Equation (4))

$$400 \,\mu\text{A} = \frac{1}{2} 100 \,\mu\text{A} / \text{V}^2 \frac{32}{1} V_{OV}^2$$

= $1600 V_{OV}^2$ (4)

Which implies that (Equation (5))

$$V_{OV}^2 = 0.25V^2 \Leftrightarrow V_{OV} = 0.5V \tag{5}$$

From Equation (5), V_{GS} is given by

$$V_{GS} = V_t + V_{OV} = 0.7V + 0.5V = 1.2V$$
(6)

Since $V_G = 0$, the voltage at the source should be instead $V_S = -1.2$. Thus,

$$R_S = \frac{-1.2V + 2.5V}{0.4mA} = 3.25 \,\mathrm{k\Omega} \tag{7}$$

2. The BJT in Figure 2 has $\beta = 100$, $V_{CESat} = 0.3V$ and $V_B(on) = 0.7V$. Find V_E , V_C and I_B , I_C and the transistor's mode of operation:

(a) (10 points) When $V_B = 0V$

(b) (10 points) When $V_B = 3V$

Solution: In this case, the transistor is in the active mode $V_{E} = a_{D} = b_{D} = 1.15 \text{ mA}$ $V_{E} = A_{D} = b_{D} = b_{D} = 0.7 = 2.3V$ $V_{E} = V_{E} = V_{E} = 0.99 \times 1.15 = 1.15 \text{ mA}$ $V_{E} = \frac{V_{E}}{2k} = \frac{2.3}{2k} = 1.15 \text{ mA}$ $I_{E} = \frac{V_{E}}{2k} = 0.99 \times 1.15 = 1.14 \text{ mA}$ $I_{E} = I_{E} - I_{C} = 0.01 \text{ mA}$ $V_{C} = 10V - I_{C}R_{C} = 4.3V$

(c) (10 points) When $V_B = 5V$

Solution: If we apply the same approach as in (b) above (and assume that the transistor is in active mode), we would notice that $I_C < 0$, which is not possible. Thus, the transistor must be in the saturation mode. In this case:

