

UNIVERSITY OF RWANDA
College of Science er Technology School of Engeering
Department of Electrical \& Electronics Engineering

## Kizito NKURIKIYEYEZU, PhD

EPE 2165-Analog Electronics

## SOLUTION \#-1: DIODE CIRCUITS

July 26, 2022
4.1

(a) Since the anode of $D_{1}$ is connected to +5 V through the $1-\mathrm{k} \Omega$ resistor, and the cathode is connected to ground, $D_{1}$ conducts and, being ideal,
has a zero voltage drop, thus

$$
\begin{aligned}
V_{1} & =0 \mathrm{~V} \\
I_{1} & =\frac{5-0}{1 \mathrm{k} \Omega}=5 \mathrm{~mA}
\end{aligned}
$$

(b) Here the situation is similar to that in (a) except that the cathode is connected to -5 V . Thus, diode $D_{2}$ conducts and, being ideal, exhibits zero voltage drop, thus

$$
\begin{aligned}
V_{2} & =-5 \mathrm{~V} \\
I_{2} & =\frac{5-(-5)}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}
\end{aligned}
$$

(c) Diodes $D_{3}$ and $D_{4}$ are connected in series in the same direction with the cathode of $D_{4}$ connected to -10 V and the anode of $D_{3}$ to ground through the $1-\mathrm{k} \Omega$ resistance. Thus, $D_{3}$ and $D_{4}$ will conduct and, being ideal, will have zero voltage drops, resulting in

$$
\begin{aligned}
V_{3} & =-10 \mathrm{~V} \\
I_{3} & =\frac{0-(-10)}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}
\end{aligned}
$$

(d) Diodes $D_{5}$ and $D_{6}$ are connected in series in the same direction and since the anode of $D_{5}$ is connected to +5 V and the cathode of $D_{6}$ to ground, the diodes will conduct and exhibit zero voltage drops, resulting in

$$
\begin{aligned}
V_{4} & =+5 \mathrm{~V} \\
I_{4} & =\frac{5}{1 \mathrm{k} \Omega}=5 \mathrm{~mA}
\end{aligned}
$$

(e) Here diode $D_{7}$ is polarized to conduct while the series diode $D_{8}$ is not (its anode is at -5 V and
its cathode is connected through the $1-\mathrm{k} \Omega$ resistor and $D_{7}$ to +5 V ). Thus

$$
I_{5}=0
$$

However, since $D_{7}$ is polarized to conduct, it will conduct a minute current that flows through the meter connected to measure $V_{5}$. The conducting $D_{7}$ will exhibit a zero voltage drop and thus

$$
V_{5}=+5-0=+5 \mathrm{~V}
$$

(f) Here $D_{9}$ is polarized to not conduct, thus

$$
I_{6}=0
$$

Diode $D_{10}$, however, is connected to conduct and it will conduct a very small current that flows through the meter connected to measure $V_{6}$. The resulting voltage across $D_{10}$ will be zero and the voltage across the $1-\mathrm{k} \Omega$ resistor will be negligibly small, thus

$$
V_{6}=-5 \mathrm{~V}
$$

4.2

The circuit with all currents and voltages indicated is shown in Fig. 4.2.2 (refer Figure below).

Our analysis proceeded as follows: Diode $D_{1}$, with its anode connected to ground and its cathode connected to -8 V through $R_{1}$, must conduct. Thus, its cathode will be at 0 V , which enables us to determine the current through $R_{1}$ as

$$
I_{R 1}=\frac{0-(-8)}{R_{1}}=\frac{8}{1}=8 \mathrm{~mA}
$$

Next, we assume that $D_{2}$ will be conducting because its cathode is at 0 V and its anode is connected to +8 V through $R_{2}$. Thus, the current in $R_{2}$ can now be found as

$$
I_{R 2}=\frac{8-0}{2}=4 \mathrm{~mA}
$$

Now, since $I_{R 1}(8 \mathrm{~mA})$ is greater than $I_{R 2}(4 \mathrm{~mA})$, then $D_{1}$ and $D_{2}$ both conduct. Now, noting that succeeding resistances are progressively larger, assume that $D_{3}$ and $D_{4}$ also conduct, and then their anode and cathode voltages will all be zero volts. Thus

$$
I_{R 3}=\frac{0-(-8)}{4}=2 \mathrm{~mA}
$$

and

$$
I_{R 4}=\frac{8-0}{8}=1 \mathrm{~mA}
$$



Figure 4.2.2

Thus, overall

$$
\begin{aligned}
I_{D 4} & =I_{R 4}=1 \mathrm{~mA} \\
I_{D 3} & =I_{R 3}-I_{D 4}=2-1=1 \mathrm{~mA} \\
I_{D 2} & =I_{R 2}-I_{D 3}=4-1=3 \mathrm{~mA} \\
I_{D 1} & =I_{R 1}-I_{D 2}=8-3=5 \mathrm{~mA}
\end{aligned}
$$

and

$$
V_{O}=0 \mathrm{~V}
$$

4.3


Figure 4.3.1


Figure 4.3.2

For a battery voltage $V_{B}$ and an ideal diode, the diode current is

$$
\begin{aligned}
i_{D} & =\frac{v_{S}-V_{B}}{R_{S}+R_{C}} \\
& =\frac{\hat{V}_{S} \sin \omega t-V_{B}}{10+50}
\end{aligned}
$$

where

$$
\hat{V}_{S}=\sqrt{2} \times 12=16.97 \mathrm{~V}
$$

Thus, for $V_{B}=12 \mathrm{~V}$,

$$
i_{D}=\frac{16.97 \sin \omega t-12}{60 \Omega}
$$

which has a peak value of

$$
\hat{i}_{D}=\frac{16.97-12}{60}=82.8 \mathrm{~mA}
$$

The diode begins to conduct (and ceases to conduct) when $16.97 \sin \omega t=12 \mathrm{~V}$ or $\sin \omega t=$ $12 / 16.97=0.707$, which correspond to an angle $\theta=\frac{\pi}{4}=45^{\circ}$. The average value of $i_{D}$ can be computed as

$$
\begin{aligned}
\left.i_{D}\right|_{a v} & =\frac{1}{2 \pi} \int_{\pi / 4}^{3 \pi / 4}(16.97 \sin \theta-12) d \theta / 60 \\
& =\frac{1}{2 \pi \times 60}[-16.97 \cos \theta-12 \theta]_{\pi / 4}^{3 \pi / 4} \\
& =13.7 \mathrm{~mA}
\end{aligned}
$$

For $V_{B}=14 \mathrm{~V}$,

$$
\text { Peak current }=\frac{16.97-14}{60 \Omega}=49.5 \mathrm{~mA}
$$

Conduction begins when $16.97 \sin \omega t=14$, or $\sin \omega t=\frac{14}{16.97}=0.825$, or $\omega t=55.6^{\circ}$. Thus,

Average current

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{55.6^{\circ}}^{180^{\circ}-55.6^{\circ}}(16.97 \sin \theta-14) d \theta / 60 \\
& =\frac{1}{2 \pi \times 60}[-16.97 \cos \theta-14 \theta]_{55.6^{\circ}}^{124 . \circ^{\circ}} \\
& =6.3 \mathrm{~mA}
\end{aligned}
$$

4.4


## Figure 4.4.1

$$
V_{O}=3 V_{D}
$$

To obtain $V_{O}=2.4 \mathrm{~V}$, we need to establish

$$
V_{D}=0.8 \mathrm{~V}
$$

This is achieved when $I$ is

$$
\begin{aligned}
I & =I_{S} e^{V_{D} / V_{T}} \\
& =10^{-16} e^{0.8 / 0.025} \\
& \simeq 7.9 \mathrm{~mA}
\end{aligned}
$$

If $R_{L}$ is connected and it draws a current of 1 mA , the current in the diodes will be reduced by 1 mA , to 6.9 mA , thus $V_{D}$ becomes

$$
\begin{aligned}
V_{D} & =V_{T} \ln \left(6.9 \times 10^{-3} / 10^{-16}\right) \\
& =0.797 \mathrm{~V}
\end{aligned}
$$

and $V_{O}$ becomes

$$
V_{O}=3 \times 0.797=2.39 \mathrm{~V}
$$

Thus, $V_{O}$ decreases by only 10 mV . Without $R_{L}$ connected, since the diodes are fed with a constant current $I$, a change in temperature causes the voltage across each diode to change by $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Thus, a temperature increase of $20^{\circ} \mathrm{C}$ causes $V_{D}$ to decrease by $2 \times 20=40 \mathrm{mV}$ and causes $V_{O}$ to decrease by 120 mV .

## 4.5



Figure 4.5.1
(a) For the circuit in Fig. 4.5.1(a), diode $D_{1}$ will be cut off while $D_{2}$ will conduct, causing the output voltage to become

$$
V_{O}=0+V_{D 2}=0.7 \mathrm{~V}
$$

Thus, $D_{1}$ has a 4.3-V reverse bias, which keeps it cut off. Thus,

$$
I_{D 1}=0
$$

and

$$
I_{D 2}=\frac{5-0.7}{10}=0.43 \mathrm{~mA}
$$

(b) For the circuit in Fig. 4.5.1(b), diode $D_{2}$ will be cut off while $D_{1}$ will conduct, causing $V_{O}$ to become

$$
V_{O}=5-V_{D 1}=5-0.7=4.3 \mathrm{~V}
$$

Thus, $D_{2}$ will have a reverse-bias voltage of 4.3 V , which keeps it in the cut-off mode,

$$
I_{D 2}=0
$$

The current in $D_{1}$ can be found as

$$
I_{D 1}=\frac{V_{O}}{10 \mathrm{k} \Omega}=\frac{4.3}{10}=0.43 \mathrm{~mA}
$$

4.6


Figure 4.6.1
When $v_{O}$ reaches $+3 \mathrm{~V}, D_{1}$ conducts and $v_{O}$ remains at the $+3-\mathrm{V}$ level irrespective of the value of $v_{I}$. Thus, the upper limiting level is $+3 \mathrm{~V} . v_{O}$ reaches +3 V when $v_{I}$ is +6 V (because of the voltage divider comprised of the two $10-\mathrm{k} \Omega$ resistors), thus the upper input threshold voltage is +6 V .

A similar situation occurs in the negative direction: When $v_{O}$ reaches $-3 \mathrm{~V}, D_{2}$ conducts and $v_{O}$ remains at the $-3-\mathrm{V}$ level irrespective of the value of $v_{I}$. Thus, the lower limiting level is -3 V . $v_{O}$ reaches -3 V when $v_{I}$ reaches -6 V , thus the lower input threshold is -6 V .

In between the two threshold levels (i.e., for $-6 \mathrm{~V} \leq v_{I} \leq+6 \mathrm{~V}$ ), both $D_{1}$ and $D_{2}$ will be off and

$$
v_{O}=\frac{10}{10+10} v_{I}=0.5 v_{I}
$$

Thus, the limiter gain $K$ is

$$
K=0.5 \mathrm{~V} / \mathrm{V}
$$

Figure 4.6 .2 shows the transfer characteristic of the limiter.


Figure 4.6.2
For $v_{I}=+12 \mathrm{~V}$, $v_{O}$ will be +3 V , thus

$$
i_{I}=\frac{12-3}{10 \mathrm{k} \Omega}=0.9 \mathrm{~mA}
$$

4.7


Figure 4.7.1


Figure 4.7.2
The dc currents in $D_{1}$ and $D_{2}$ are

$$
\begin{aligned}
& I_{D 1}=I_{x} \\
& I_{D 2}=I-I_{D 1}=I-I_{x}
\end{aligned}
$$

Thus, the small-signal resistances of $D_{1}$ and $D_{2}$ are

$$
\begin{gathered}
r_{d 1}=\frac{V_{T}}{I_{x}} \\
r_{d 2}=\frac{V_{T}}{I-I_{x}}
\end{gathered}
$$

The small-signal equivalent circuit is shown in Fig. 4.7.2 from which we can find $v_{o} / v_{i}$ as

$$
\begin{aligned}
\frac{v_{o}}{v_{i}} & =\frac{r_{d 2}}{r_{d 2}+r_{d 1}} \\
& =\frac{V_{T} /\left(I-I_{x}\right)}{\frac{V_{T}}{I-I_{x}}+\frac{V_{T}}{I_{x}}}
\end{aligned}
$$

Thus,

$$
\frac{v_{o}}{v_{i}}=\frac{I_{x}}{I}
$$

For $I=1 \mathrm{~mA}$,

$$
\frac{v_{o}}{v_{i}}=I_{x}
$$

where $I_{x}$ is in mA .
To obtain the given values of $v_{o} / v_{i}$, we need the corresponding values of $I_{x}$ as follows:

| $v_{o} / v_{i}$ | 0 | 0.2 | 0.5 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| $I_{x}(\mathrm{~mA})$ | 0 | 0.2 | 0.5 | 1.0 |

This circuit is a signal attenuator whose transfer ratio is linearly controlled by the current $I_{x}$.

## 4.8

Figure 4.8 .1 shows the circuit.

$$
\begin{aligned}
V_{O} & =4 V_{D} \\
\Rightarrow V_{D} & =\frac{3.0}{4}=0.75 \mathrm{~V}
\end{aligned}
$$

Now, for the available diode, we have

$$
\begin{equation*}
0.1 \mathrm{~mA}=I_{S} e^{0.7 / 0.025} \tag{1}
\end{equation*}
$$



Figure 4.8.1
Thus, the required current $I$ can be found from

$$
\begin{equation*}
I=I_{S} e^{0.75 / 0.025} \tag{2}
\end{equation*}
$$

Dividing Eq. (2) by Eq. (1) yields

$$
I=0.1 \times e^{0.05 / 0.025}=0.74 \mathrm{~mA}
$$

The required value of $R$ can now be found from

$$
\begin{aligned}
I & =\frac{5-V_{O}}{R} \\
0.74 & =\frac{5-3}{R} \\
\Rightarrow R & =2.7 \mathrm{k} \Omega
\end{aligned}
$$

At a current $I_{D}=0.74 \mathrm{~mA}$, each diode has a small-signal resistance of

$$
r_{d}=\frac{V_{T}}{I_{D}}=\frac{25 \mathrm{mV}}{0.74 \mathrm{~mA}}=33.8 \Omega
$$

and the string of four diodes has an incremental (small-signal) resistance of

$$
r=4 r_{d}=4 \times 33.8=135 \Omega
$$

With the supply voltage changing by $\pm 10 \%$-that is, by $\pm 0.5 \mathrm{~V}$-we can use the voltage divider comprised of the diode string (with a total resistance $r=135 \Omega$ ) and the resistance $R$ to determine the corresponding change in $V_{O}$ as

$$
\begin{aligned}
\Delta V_{O} & = \pm 0.5 \times \frac{0.135}{0.135+2.7} \\
& = \pm 23.8 \mathrm{mV}
\end{aligned}
$$

or $\pm 0.8 \%$.
This implies a change of $\pm \frac{23.8}{4} \simeq \pm 6 \mathrm{mV}$ across each diode, which is small enough for the small-signal model to be applicable.

If a load resistance $R_{L}=15 \mathrm{k} \Omega$ is connected to $V_{O}$, we can determine the approximate change $\Delta V_{O}$ in $V_{O}$ as follows. First, assume that $V_{O}$ does not change, then the current drawn by $R_{L}$ can be found as

$$
I_{L}=\frac{V_{O}}{R_{L}}=\frac{3}{15}=0.2 \mathrm{~mA}
$$

This current will be subtracted from that supplied through $R$, thus the current in the diode string is reduced by 0.2 mA . Using the small signal model for the diodes, each diode voltage will decrease by $0.2 \mathrm{~mA} \times r_{d}=0.2 \times 33.8=6.76 \mathrm{mV}$, which is still small enough for the small signal model to be applicable. Thus, the change in $V_{O}$ will be

$$
\Delta V_{O}=-4 \times 6.76=-27 \mathrm{mV}
$$

or $=0.9 \%$.
Since the change in $V_{O}$ is small, our original assumption used to find the current $I_{L}$ is justified.
4.9


Figure 4.9.1

$$
V_{Z K} \simeq V_{Z 0}
$$

where

$$
V_{Z 0}+r_{z} I_{Z}=V_{Z}
$$

Thus,

$$
\begin{aligned}
V_{Z 0} & =V_{Z}-r_{z} I_{Z} \\
& =6.8-0.020 \times 5 \\
& =6.7 \mathrm{~V}
\end{aligned}
$$

For no load, the lowest value of $V_{S}$ to maintain breakdown operation is equal to the knee voltage, that is,

$$
V_{S \min }=6.7 \mathrm{~V}
$$

For $V_{S}=9 \mathrm{~V}$, the maximum load current $I_{L \max }$ for which breakdown operation is maintained is found from

$$
V_{S}=V_{Z 0}+\left(I_{L \max }+I_{Z K}\right) R
$$

where we have assumed the zener voltage to be at its knee value ( $V_{Z K} \simeq V_{Z 0}$ ) and the zener current at $I_{Z K}=0.2 \mathrm{~mA}$. Thus

$$
\begin{aligned}
9 & =6.7+\left(I_{L \max }+0.2\right) \times 0.2 \\
\Rightarrow I_{L \max } & =11.3 \mathrm{~mA}
\end{aligned}
$$

For $I_{L}=0.5 I_{L \max }=5.65 \mathrm{~mA}$, the lowest value of $V_{S}$ to maintain breakdown operation is found from

$$
\begin{aligned}
V_{S \min } & =V_{Z 0}+\left(0.5 I_{L \max }+I_{Z K}\right) R \\
& =6.7+(0.5 \times 11.3+0.2) \times 0.2 \\
& =7.9 \mathrm{~V}
\end{aligned}
$$

Line regulation $=\frac{r_{z}}{r_{z}+R}=\frac{20}{20+200} \simeq 91 \mathrm{mV} / \mathrm{V}$

$$
\begin{aligned}
\text { Load regulation }=-\left(r_{z} \| R\right) & =-(20 \| 200) \\
& =-18.2 \mathrm{mV} / \mathrm{mA}
\end{aligned}
$$

The circuit in Fig. 4.10.1 is a full-wave rectifier with a center-tapped secondary winding. The circuit can be analyzed by looking at $v_{O}^{+}$and $v_{O}^{-}$ separately. The circuits for doing so are shown in Fig. 4.10.2. Their analysis, of course, is identical. For each supply,

$$
\begin{aligned}
V_{O} & =10 \mathrm{~V} \\
V_{r} & =0.8 \mathrm{~V}
\end{aligned}
$$

Thus,

$$
v_{O}=10 \pm 0.4 \mathrm{~V}
$$

It follows that the peak value of $v_{S}$ must be $10.4+$ $0.7=11.1 \mathrm{~V}$ and the total rms voltage across the secondary will be

$$
\frac{2 \times 11.1}{\sqrt{2}}=15.7 \mathrm{~V}(\mathrm{rms})
$$

Thus,

$$
\text { Transformer turns ratio }=\frac{120}{15.7}=7.64: 1
$$

To deliver a $50-\mathrm{mA}$ dc current to each load,

$$
R=\frac{10}{0.05}=200 \Omega
$$

4.10 Refer to Figures 4.10 .1 and 4.10 .2 below.


Figure 4.10.1


Figure 4.10.2

Now, the value of $C$ can be found from

$$
\begin{aligned}
V_{r} & =\frac{V_{p}-0.7}{2 f C R} \\
0.8 & =\frac{11.1-0.7}{2 \times 60 \times C \times 200} \\
\Rightarrow C & =541.7 \mu \mathrm{~F}
\end{aligned}
$$

To specify the diodes, we determine $i_{D a v}$ and $i_{D \max }$,

$$
\begin{aligned}
i_{D a v} & =I_{L}\left[1+\pi \sqrt{\left(V_{p}-0.7\right) / 2 V_{r}}\right] \\
& =50[1+\pi \sqrt{(11.1-0.7) / 1.6}] \\
& =450.5 \mathrm{~mA} \\
i_{D \max } & =I_{L}\left[1+2 \pi \sqrt{\left(V_{p}-0.7\right) / 2 V_{r}}\right] \\
& =50[1+2 \pi \sqrt{(11.1-0.7) / 1.6}] \\
& =851 \mathrm{~mA}
\end{aligned}
$$

To determine the required PIV rating of each diode, we determine the maximum reverse voltage that appears across one of the diodes, say $D_{1}$. This occurs when $v_{S}$ is at its maximum negative value $-V_{p}$. Since the cathode of $D_{1}$ will be at +10.4 V , the maximum reverse voltage across $D_{1}$ will be $10.4+11.1=21.5 \mathrm{~V}$. Using a factor of safety of 1.5 , then each of the four diodes must have

$$
\text { PIV }=1.5 \times 21.5=32.3 \mathrm{~V}
$$

4.11


Figure 4.11.1

When $v_{I}$ is positive, $v_{A}$ goes positive, turning on the diode and closing the negative feedback loop around the op amp. The result is that $v_{-}=v_{I}$, $v_{O}=2 v_{-}=2 v_{I}, v_{A}=v_{O}+0.7$, and $i_{D}=\frac{v_{O}}{20}+\frac{v_{O}}{10}$ $=0.15 v_{O}, \mathrm{~mA}$. Thus,
(a) For $v_{I}=+0.1 \mathrm{~V}: v_{-}=+0.1 \mathrm{~V}, v_{O}=+0.2 \mathrm{~V}$, $v_{A}=0.9 \mathrm{~V}, i_{D}=0.03 \mathrm{~mA}=30 \mu \mathrm{~A}$.
(b) For $v_{I}=+1 \mathrm{~V}: v_{-}=+1 \mathrm{~V}, v_{O}=+2 \mathrm{~V}$, $v_{A}=+2.7 \mathrm{~V}, i_{D}=0.15 \times 2=0.3 \mathrm{~mA}$.

When $v_{I}$ goes negative, $v_{A}$ follows, the diode turns off, and the feedback loop is opened. The op amp saturates with $v_{A}=-5 \mathrm{~V}, v_{-}=0 \mathrm{~V}$, and $v_{O}=0 \mathrm{~V}$. Thus,
(c) For $v_{I}=-0.1 \mathrm{~V}: v_{-}=0 \mathrm{~V}, v_{A}=-5 \mathrm{~V}$, $v_{O}=0 \mathrm{~V}$, and $i_{D}=0$.
(d) For $v_{I}=-1 \mathrm{~V}: v_{-}=0 \mathrm{~V}, v_{A}=-5 \mathrm{~V}$, $v_{O}=0 \mathrm{~V}$, and $i_{D}=0$.

Finally, if $v_{I}$ is a symmetrical square wave of $2-\mathrm{V}$ amplitude and zero average, the output will be zero during the negative half-cycles of the input and will equal twice the input (i.e., 4 V ) during the positive half-cycles. See Fig. 4.11.2.


Figure 4.11.2

Thus, $v_{O}$ is a square wave with $0-\mathrm{V}$ and $4-\mathrm{V}$ levels (i.e., $2-\mathrm{V}$ average) and, of course, the same frequency $(1 \mathrm{kHz})$ as the input.
4.12


Figure 4.12 .1

(a) For light load ( $R$ very large), the output is a square wave of period $T$ going from +0.5 V to $+0.5-(100-10)=-89.5 \mathrm{~V}$. See Figure 4.12.2(b).
(b) If $R$ is reduced so that $R C=2 T$, the output waveform will take the shape shown in Fig. 4.12.2(c). Consider first the negative portion of the waveform. As before, the largest negative value is -89.5 V . At this time, the diode is cut off and the capacitor discharges through the now smaller resistance $R$. Thus, $v_{O}$ rises exponentially, heading towards 0 V , but of course is interrupted $(T / 2)$ second later, thus

$$
\begin{aligned}
v_{O}(t) & =0-89.5 e^{-t / C R} \\
v_{O}\left(\frac{T}{2}\right) & =-89.5 e^{-T / 2 C R}
\end{aligned}
$$

For $C R=2 T$,

$$
v_{O}\left(\frac{T}{2}\right)=-89.5 \times e^{-1 / 4}=-69.7 \mathrm{~V}
$$

Thus, at the end of the discharge interval, $v_{O}=$ -69.7 V . At that time, the input rises by 90 V and the output attempts to follow. However, the diode clamps $v_{O}$ to about 0.7 V or so and it conducts heavily to recharge the capacitor. The diode voltage then drops, reaching about 0.5 V at the end of the half-cycle. As the input falls by 90 V , the output follows, reaching -89.5 V , and the cycle repeats.

Figure 4.12.2

