

UNIVERSITY OF RWANDA
College of Science er Technology School of Engeering
Department of Electrical \& Electronics Engineering

Kizito NKURIKIYEYEZU, PhD

EPE 2165-Analog Electronics

SOLUTION \#-3: DIODE CIRCUITS

$$
\text { July 26, } 2022
$$

6.1
(a)

$$
i_{C}=I_{S} e^{v_{B E} / V_{T}}
$$

At $i_{C}=i_{C 1}$,

$$
\begin{equation*}
i_{C 1}=I_{S} e^{v_{B E 1} / V_{T}} \tag{1}
\end{equation*}
$$

and at $i_{C}=i_{C 2}$,

$$
\begin{equation*}
i_{C 2}=I_{S} e^{v_{B E 2} / V_{T}} \tag{2}
\end{equation*}
$$

Dividing Eq. (2) by Eq. (1), we obtain

$$
\begin{equation*}
\frac{i_{C 2}}{i_{C 1}}=e^{\left(v_{B E 2}-v_{B E 1}\right) / V_{T}} \tag{3}
\end{equation*}
$$

Which can be expressed alternately as

$$
\begin{equation*}
v_{B E 2}-v_{B E 1}=V_{T} \ln \left(\frac{i_{C 2}}{i_{C 1}}\right) \tag{4}
\end{equation*}
$$

For $i_{C 2} / i_{C 1}=2$,

$$
\Delta v_{B E} \equiv v_{B E 2}-v_{B E 1}=25 \ln 2=17.3 \mathrm{mV}
$$

(b) Using Eq. (4) with $i_{C 2} / i_{C 1}=10$, we find

$$
\Delta v_{B E} \equiv v_{B E 2}-v_{B E 1}=25 \ln (10)=57.6 \mathrm{mV}
$$

(c) The percentage change in i_{C},

$$
\frac{i_{C 2}-i_{C 1}}{i_{C 1}} \times 100
$$

corresponding to a change $\triangle v_{B E} \equiv v_{B E 2}-v_{B E 1}$ can be calculated using Eq. (3). The results obtained for the given values of $\triangle v_{B E}$ are as in the table below:

We observe that for small $\triangle v_{B E}$, positive and negative increments yield nearly equal positive and negative changes in i_{C}. Also, for small $\triangle v_{B E}$, the changes in i_{C} are linearly related to $\Delta v_{B E}$ with a proportionality factor of 4% per mV . This linear relationship breaks down when $\triangle v_{B E}$ becomes large, for instance, $\pm 10 \mathrm{mV}$.
(d)

$$
\begin{aligned}
\beta & =\frac{i_{C}}{i_{B}}=\frac{1 \mathrm{~mA}}{12.5 \mu \mathrm{~A}}=\frac{1}{0.0125}=80 \\
\alpha & =\frac{\beta}{\beta+1}=\frac{80}{81}=0.988 \\
i_{E} & =i_{C}+i_{B} \\
& =1+0.0125=1.0125 \mathrm{~mA}
\end{aligned}
$$

(e)

$$
\begin{aligned}
1 \times 10^{-3} & =I_{S} e^{675 / 25} \\
\Rightarrow I_{S} & =1.88 \times 10^{-15} \mathrm{~A}
\end{aligned}
$$

(f) With two identical transistors connected in parallel with a combined collector current of 1 mA , each transistor has a collector current of 0.5 mA . Thus, Eq. (4) can be used to determine the change in $v_{B E}$ as i_{C} decreases from 1 mA to 0.5 mA as

$$
v_{B E 2}-v_{B E 1}=25 \ln (0.5)=-17.3 \mathrm{mV}
$$

From (e) above, $v_{B E 1}=675 \mathrm{mV}$, thus

$$
v_{B E 2}=675-17.3=657.7 \mathrm{mV}
$$

$\Delta v_{B E}, \mathrm{mV}$	+0.5	-0.5	+1.0	-1.0	+2.0	-2.0	+5.0	-5.0	+10	-10
$\frac{\Delta i_{C}}{i_{C}}, \%$	+2	-2	-4	-4	+8.3	-7.7	+22	-18	+49	-33

Alternatively, we can think of the combination of the two parallel devices as a transistor with twice the base-emitter area and correspondingly twice the value of I_{S}. When this equivalent transistor is conducting a $1-\mathrm{mA}$ collector current, the base emitter voltage can be obtained from

$$
\begin{aligned}
1 \times 10^{-3} & =2 \times 1.88 \times 10^{-15} e^{v_{B E} / V_{T}} \\
\Rightarrow v_{B E} & =657.7 \mathrm{mV}
\end{aligned}
$$

6.2

Figure 6.2.1
(a) $V_{C}=+1.58 \mathrm{~V}$ and $V_{B}=0 \mathrm{~V}$; thus, $V_{C}>V_{B}$, indicating that the transistor must be operating in the active mode.
(b)

$$
\begin{aligned}
& I_{E}=\frac{V_{E}-\left(-V_{E E}\right)}{R_{E}}=\frac{-0.68-(-5)}{5} \\
& I_{E}=0.864 \mathrm{~mA} \\
& I_{B}=\frac{I_{E}}{\beta+1}=\frac{0.864}{100+1}=0.0086 \mathrm{~mA} \\
& I_{C}=I_{E}-I_{B}=0.855 \mathrm{~mA}
\end{aligned}
$$

(c)

$$
\begin{aligned}
I_{C} & =\frac{V_{C C}-V_{C}}{R_{C}} \\
0.855 & =\frac{5-1.58}{R_{C}} \\
\Rightarrow R_{C} & =4 \mathrm{k} \Omega
\end{aligned}
$$

(d) To obtain $I_{C}=2 \mathrm{~mA}$, the emitter current I_{E} must be

$$
I_{E}=\frac{I_{C}}{\alpha}
$$

where

$$
\alpha=\frac{\beta}{\beta+1}=\frac{100}{101}=0.99
$$

Thus,

$$
I_{E}=\frac{2}{0.99}=2.02 \mathrm{~mA}
$$

Next, we determine V_{E} by first finding $V_{B E}$. The transistor has $I_{C}=0.855 \mathrm{~mA}$ at $V_{B E}=0.68 \mathrm{~V}$. To obtain $I_{C}=2 \mathrm{~mA}, V_{B E}$ must be increased by

$$
\Delta V_{B E}=V_{T} \ln \frac{2}{0.855}=0.02 \mathrm{~V}
$$

resulting in

$$
V_{B E}=0.68+0.02=0.7 \mathrm{~V}
$$

and thus

$$
V_{E}=0-V_{B E}=-0.7 \mathrm{~V}
$$

The required value of R_{E} can now be determined from

$$
\begin{aligned}
R_{E} & =\frac{V_{E}-\left(-V_{E E}\right)}{I_{E}}=\frac{-0.7-(-5)}{2.02} \\
\Rightarrow R_{E} & =2.13 \mathrm{k} \Omega
\end{aligned}
$$

The required value of R_{C} can be determined from

$$
\begin{aligned}
R_{C} & =\frac{V_{C C}-V_{C}}{I_{C}}=\frac{5-1}{2} \\
\Rightarrow R_{C} & =2 \mathrm{k} \Omega
\end{aligned}
$$

Figure 6.2.2

Figure 6.2.2 shows the redesigned circuit together with all voltages and currents.
6.3

Figure 6.3.1

Since $I_{E}=1 \mathrm{~mA}$, it remains constant and independent of the value of β.

$$
\begin{gathered}
\alpha=\frac{\beta}{\beta+1} \\
\beta=50, \quad \alpha=\frac{50}{50+1}=0.980 \\
\beta=200, \quad \alpha=\frac{200}{200+1}=0.995
\end{gathered}
$$

Thus, α lies in the range 0.980 to 0.995 . Assuming the transistor is operating in the active mode over this range, we find I_{C} from

$$
I_{C}=\alpha I_{E}
$$

For $I_{E}=1 \mathrm{~mA}, I_{C}$ lies in the range 0.980 mA to 0.995 mA .

$$
V_{C}=V_{C C}-I_{C} R_{C}=5-I_{C} \times 4
$$

Substituting for $I_{C}=0.980$ to 0.995 results in the range of V_{C} as 1.08 V to 1.02 V . Note that over this range of V_{C}, the BJT is indeed in the active region, as assumed.

$$
I_{B}=\frac{I_{E}}{\beta+1}=\frac{1}{\beta+1} \mathrm{~mA}
$$

For β in the range 50 to $200, I_{B}$ will be in the range 0.02 mA to 0.005 mA . Utilizing the relationship

$$
I_{C}=I_{S} e^{V_{B E} / V_{T}}
$$

which can be rewritten as

$$
V_{B E}=V_{T} \ln \left(I_{C} / I_{S}\right)
$$

we can determine the range of $V_{B E}$ by substituting $I_{C}=0.980 \mathrm{~mA}$ to 0.995 mA . We obtain the range of $V_{B E}$ as from 0.690 V to 0.691 V . Since $V_{E}=-V_{B E}$, the range of V_{E} will be -0.690 V to -0.691 V .

Comment:

Although β ranges over a $4: 1$ range or a 300% change relative to its low value, the corresponding changes in α and all voltages and currents (except for I_{B}) are much lower. For instance, α, I_{C}, and V_{C} change by only 1.5% relative to their low values. $V_{B E}$ and V_{E} change by only 1 mV (in 700 mV or so; a negligible change). The only quantity that tracks the change in β is I_{B}. Nevertheless, as we will learn later on, I_{B} in this circuit is not an important parameter. The insensitivity of this circuit to β variation makes it an excellent design!
6.4

Figure 6.4.1

The current I_{B} can be determined from

$$
I_{B}=\frac{5-V_{B E}}{R_{B}}=\frac{5-0.7}{100}
$$

Thus,

$$
I_{B}=0.043 \mathrm{~mA}
$$

and is independent of β.
Assuming active-mode operation, the collector current can be found from

$$
I_{C}=\beta I_{B}
$$

and the collector voltage can then be determined using

$$
V_{C}=5-R_{C} I_{C}=5-1 \times I_{C}
$$

For $\beta=50$,

$$
I_{C}=50 \times 0.043=2.15 \mathrm{~mA}
$$

and

$$
V_{C}=5-1 \times 2.15=2.85 \mathrm{~V}
$$

which is greater than the voltage at the base, thus the transistor is the active region, as assumed.

For $\beta=200$,

$$
I_{C}=200 \times 0.043=8.6 \mathrm{~mA}
$$

and

$$
V_{C}=5-1 \times 8.6=-3.6 \mathrm{~V}
$$

which is impossible as the base voltage is +0.7 V . Thus, the transistor cannot be operating in the active mode. Rather, it must be in the saturation mode, for which

$$
\begin{aligned}
V_{C} & =V_{C E s a t}=0.2 \mathrm{~V} \\
I_{C} & =\frac{5-V_{C}}{R_{C}}=\frac{5-0.2}{1}=4.8 \mathrm{~mA}
\end{aligned}
$$

The ratio I_{C} / I_{B}, which is the forced β, is thus

$$
\beta_{\mathrm{forced}}=\frac{I_{C}}{I_{B}}=\frac{4.8}{0.043}=111.6
$$

which is lower than the normal value of β (200), confirming that the transistor is in saturation.

Comment:

The operation of this circuit is highly sensitive to the value of β. Indeed, over the specified range of β, the transistor goes from active mode to saturation. This is not a desirable situation and the circuit is not a good design.
6.5

Figure 6.5.2
From Fig. 6.5.2, we see that V_{C} is lower than V_{B}, thus the pnp transistor is operating in the active mode. By reference to the figure, we can write

$$
I_{B}=\frac{V_{B}}{20 \mathrm{k} \Omega}=\frac{+0.5 \mathrm{~V}}{20 \mathrm{k} \Omega}=0.025 \mathrm{~mA}
$$

and

$$
I_{C}=\frac{V_{C}-(-5)}{2 \mathrm{k} \Omega}=\frac{-1+5}{2}=2 \mathrm{~mA}
$$

Thus,

$$
\beta \equiv \frac{I_{C}}{I_{B}}=\frac{2 \mathrm{~mA}}{0.025 \mathrm{~mA}}=80
$$

To obtain $V_{E B}$, we utilize the given information that $V_{B E}=0.7 \mathrm{~V}$ at $I_{C}=1 \mathrm{~mA}$. Here $I_{C}=2 \mathrm{~mA}$, thus

$$
V_{B E}=0.7+V_{T} \ln \left(\frac{2}{1}\right)=0.717 \mathrm{~V}
$$

We now can find V_{E} as

$$
\begin{aligned}
V_{E} & =V_{B}+V_{E B} \\
& =0.5+0.717=1.217 \mathrm{~V}
\end{aligned}
$$

The current I_{E} can be found as

$$
I_{E}=I_{C}+I_{B}=2+0.025=2.025 \mathrm{~mA}
$$

The value of R_{E} can be determined from

$$
\begin{aligned}
I_{E} & =\frac{5-V_{E}}{R_{E}} \\
\Rightarrow R_{E} & =\frac{5-1.217}{2.025}=1.868 \mathrm{k} \Omega
\end{aligned}
$$

Figure 6.6.1
6.6
(a) Refer to Figure 6.6.1 above.

$$
r_{o}=\frac{V_{A}}{I_{C}} \simeq \frac{100 \mathrm{~V}}{1 \mathrm{~mA}}=100 \mathrm{k} \Omega
$$

Note that the approximation involved is that we used I_{C} at $V_{C E}=1 \mathrm{~V}$ rather than I_{C}^{\prime}, which would be the value at the intersection of the $i_{C}-v_{C E}$ line with the vertical axis (Fig. 6.6.1). Alternatively, we can use

$$
r_{o}=\frac{V_{A}+V_{C E}}{I_{C}}=\frac{100+1}{1}=101 \mathrm{k} \Omega
$$

which is very close to the approximate value obtained above and which we will usually use.
(b) For $\Delta V_{C E}=10 \mathrm{~V}$, the current I_{C} changes by

$$
\Delta I_{C}=\frac{\Delta V_{C E}}{r_{o}}=\frac{10}{100}=0.1 \mathrm{~mA}
$$

Thus, I_{C} becomes

$$
I_{C}=1+0.1=1.1 \mathrm{~mA}
$$

(c)

$$
\begin{aligned}
r_{o} & =\frac{V_{A}}{I_{C}} \simeq \frac{100 \mathrm{~V}}{0.1 \mathrm{~mA}}=1000 \mathrm{k} \Omega=1 \mathrm{M} \Omega \\
\Delta I_{C} & =\frac{\Delta V_{C E}}{r_{o}}=\frac{10 \mathrm{~V}}{1000 \mathrm{k} \Omega}=0.01 \mathrm{~mA} \\
I_{C} & =0.1+0.01=0.11 \mathrm{~mA}
\end{aligned}
$$

6.7
(a)

Figure 6.7.1(a)

Assume operation in the active mode.
$V_{E}=V_{B}+V_{E B}=-4+0.7=-3.3 \mathrm{~V}$
$I_{E}=\frac{0-V_{E}}{3.3 \mathrm{k} \Omega}=\frac{0-(-3.3)}{3.3}=1 \mathrm{~mA}$
$I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E}=\frac{50}{50+1} \times 1=0.98 \mathrm{~mA}$
$I_{B}=\frac{I_{C}}{\beta}=\frac{0.98}{50}=0.0196 \mathrm{~mA}=19.6 \mu \mathrm{~A}$
$V_{C}=-10+I_{C} \times 4.7=-10+0.98 \times 4.7=-5.39 \mathrm{~V}$

Since $V_{C}<V_{B}$, the CBJ is reverse biased and the pnp transistor is operating in the active mode, as assumed.
(b)

Figure 6.7.1(b)

Assume active-mode operation.

$$
\begin{aligned}
& V_{E}=V_{B}+V_{E B}=-6+0.7=-5.3 \mathrm{~V} \\
& I_{E}=\frac{0-V_{E}}{3.3 \mathrm{k} \Omega}=\frac{0-(-5.3)}{3.3}=1.606 \mathrm{~mA} \\
& I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E}=\frac{50}{50+1} \times 1.606 \\
& =1.57 \mathrm{~mA} \\
& V_{C}=-10+4.7 \times I_{C}=-10+4.7 \times 1.57 \\
& =-2.62 \mathrm{~V}
\end{aligned}
$$

Since V_{C} at -2.62 V is higher than V_{B} at -6 V , it follows that the transistor is not in the active mode as we assumed. Rather, the pnp transistor must be operating in saturation. In this case, V_{E} and I_{E} remain unchanged at

$$
V_{E}=-5.3 \mathrm{~V}, \quad I_{E}=1.606 \mathrm{~mA}
$$

but $V_{E C}$ now is

$$
V_{E C \text { sat }}=0.2 \mathrm{~V}
$$

Thus,

$$
V_{C}=V_{E}-V_{E C \mathrm{sat}}=-5.3-0.2=-5.5 \mathrm{~V}
$$

and

$$
I_{C}=\frac{V_{C}-(-10)}{4.7 \mathrm{k} \Omega}=\frac{-5.5+10}{4.7}=0.957 \mathrm{~mA}
$$

and

$$
I_{B}=I_{E}-I_{C}=1.606-0.957=0.649 \mathrm{~mA}
$$

As another check that the transistor is operating in saturation, we find the forced β as

$$
\beta_{\text {forced }} \equiv \frac{I_{C}}{I_{B}}=\frac{0.957 \mathrm{~mA}}{0.649 \mathrm{~mA}}=1.47
$$

which is much lower than the normal β of 50 , verifying that the transistor is operating in saturation.
(c)

Figure 6.7.1(c)

Assume active-mode operation.
$V_{E}=V_{B}+V_{E B}=-2+0.7=-1.3 \mathrm{~V}$
$I_{E}=\frac{+2-V_{E}}{3.3 \mathrm{k} \Omega}=\frac{2-(-1.3)}{3.3}=1 \mathrm{~mA}$
$I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E}=\frac{50}{50+1} \times 1=0.98 \mathrm{~mA}$
$I_{B}=\frac{I_{C}}{\beta}=\frac{0.98 \mathrm{~mA}}{50}=0.0196 \mathrm{~mA}=19.6 \mu \mathrm{~A}$
$V_{C}=-8+I_{C} \times 4.7=-8+0.98 \times 4.7=-3.39 \mathrm{~V}$

Since V_{C} at -3.39 V is lower than V_{B} at -2 V , the CBJ is reverse biased and the transistor is operating in the active mode, as assumed.
(d)

Figure 6.7.1(d)
Since the base is at 0 V and the emitter is connected to ground $(0 \mathrm{~V})$ through the $3.3-\mathrm{k} \Omega$ resistance, the emitter-base junction cannot conduct. Thus,

$$
\begin{aligned}
V_{E} & =0 \mathrm{~V} \\
I_{E} & =0 \mathrm{~mA}
\end{aligned}
$$

Since the collector is connected to -10 V through the $4.7-\mathrm{k} \Omega$ resistance, the CBJ will be reverse biased. Thus,

$$
\begin{aligned}
I_{C} & =0 \mathrm{~mA} \\
I_{B} & =0
\end{aligned}
$$

and

$$
V_{C}=-10+I_{C} \times 4.7=-10 \mathrm{~V}
$$

Thus, the transistor is cut off.
(e)

Figure 6.7.1(e)

Assume active-mode operation.
$V_{E}=V_{B}-V_{B E}=-4-0.7=-4.7 \mathrm{~V}$
$I_{E}=\frac{V_{E}-(-10)}{4.7 \mathrm{k} \Omega}=\frac{-4.7+10}{4.7}=1.128 \mathrm{~mA}$
$I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E}=\frac{50}{50+1} \times 1.13=1.105 \mathrm{~mA}$
$I_{B}=\frac{I_{C}}{\beta}=\frac{1.105}{50}=0.022 \mathrm{~mA}=22 \mu \mathrm{~A}$
$V_{C}=0-I_{C} \times 3.3=-1.105 \times 3.3=-3.65 \mathrm{~V}$

Since V_{C} at -3.65 V is higher than V_{B} at -4 V , the CBJ is reverse biased and the $n p n$ transistor is operating in the active mode, as assumed.
(f)

Figure 6.7.1(f)

Assume active-mode operation.
$V_{E}=V_{B}-V_{B E}=-6-0.7=-6.7 \mathrm{~V}$
$I_{E}=\frac{V_{E}-(-10)}{4.7 \mathrm{k} \Omega}=\frac{-6.7+10}{4.7}=0.702 \mathrm{~mA}$
$I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E}=\frac{50}{50+1} \times 0.702=0.688 \mathrm{~mA}$
$I_{B}=\frac{I_{C}}{\beta}=\frac{0.688}{50}=0.0138 \mathrm{~mA}=13.8 \mu \mathrm{~A}$
$V_{C}=0-I_{C} \times 3.3=0-0.688 \times 3.3=-2.27 \mathrm{~V}$

Since V_{C} at -2.27 V is higher than V_{B} at -6 V , the CBJ is reverse biased and the $n p n$ transistor is operating in the active mode, as assumed.

6.8

(a)

Figure 6.8.1

We note that $V_{B C}=0$ means the transistor is operating in the active mode. The circuit is shown in Fig. 6.8.1 with some of the analysis already done on the diagram. We can now write

$$
\begin{aligned}
& R_{E}=\frac{0-V_{E}}{I_{E}}=\frac{0-(-3.3)}{0.5 \mathrm{~mA}}=6.6 \mathrm{k} \Omega \\
& R_{C}=\frac{V_{C}-(-10)}{I_{C}}=\frac{-4+10}{0.5 \mathrm{~mA}}=12 \mathrm{k} \Omega
\end{aligned}
$$

(b)

Figure 6.8.2

The circuit with some of the analysis already performed directly on the diagram is shown in

Fig. 6.8.2. We can now write

$$
\begin{aligned}
& R_{E}=\frac{0-V_{E}}{I_{E}}=\frac{0-(-5.3)}{0.5}=10.6 \mathrm{k} \Omega \\
& R_{C}=\frac{V_{C}-(-10)}{I_{C}}=\frac{-6+10}{0.5}=8 \mathrm{k} \Omega
\end{aligned}
$$

6.9

Figure 6.9.2

The circuit is shown in Fig. 6.9.2 with the required current and voltage values indicated. Observe that since V_{C} is higher than V_{E} by more than 0.3 V , the BJT will be operating in the active mode. The required value of R_{C} can be found from

$$
R_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=\frac{9-5}{1 \mathrm{~mA}}=4 \mathrm{k} \Omega
$$

We can determine I_{B} from

$$
I_{B}=\frac{I_{C}}{\beta}=\frac{1 \mathrm{~mA}}{100}=0.01 \mathrm{~mA}
$$

and thus

$$
I_{E}=I_{C}+I_{B}=1+0.01=1.01 \mathrm{~mA}
$$

Now, the value of R_{E} can be found from

$$
R_{E}=\frac{V_{E}}{I_{E}}=\frac{3 \mathrm{~V}}{1.01 \mathrm{~mA}}=2.97 \mathrm{k} \Omega
$$

The base voltage V_{B} can be found as

$$
V_{B}=V_{E}+V_{B E}=3+0.7=3.7 \mathrm{~V}
$$

The value of $R_{B 1}$ can be then found from

$$
R_{B 1}=\frac{V_{C C}-V_{B}}{I_{B 1}}=\frac{9-3.7}{0.1 \mathrm{~mA}}=53 \mathrm{k} \Omega
$$

A node equation at the base yields the value of the current $I_{B 2}$ as

$$
\begin{aligned}
I_{B 2} & =I_{B 1}-I_{B} \\
& =0.1-0.01=0.09 \mathrm{~mA}
\end{aligned}
$$

The required value of $R_{B 2}$ can now be found as

$$
R_{B 2}=\frac{V_{B}}{I_{B 2}}=\frac{3.7}{0.09}=41.1 \mathrm{k} \Omega
$$

6.10

Figure 6.10.1

Figure 6.10.2

Using Thevenin's theorem, we can replace the voltage divider across $V_{C C}$ with

$$
V_{B B}=V_{C C} \times \frac{10}{10+20}=9 \times \frac{10}{10+20}=+3 \mathrm{~V}
$$

and

$$
R_{B B}=10 \| 20=6.67 \mathrm{k} \Omega
$$

The resulting circuit with this simplification is shown in Fig. 6.10.2. Noting that the current in the base is

$$
I_{B}=\frac{I_{E}}{\beta+1}
$$

we can write a loop equation for the loop containing $V_{B B}, R_{B B}$, and the emitter circuit as

$$
V_{B B}=\frac{I_{E}}{\beta+1} R_{B B}+V_{B E}+I_{E} R_{E}
$$

from which I_{E} can be found as

$$
I_{E}=\frac{V_{B B}-V_{B E}}{R_{E}+\frac{R_{B B}}{\beta+1}}
$$

Substituting $V_{B B}=3 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$, and $R_{E}=$ $1 \mathrm{k} \Omega$, we obtain

$$
\begin{equation*}
I_{E}=\frac{3-0.7}{1+\frac{6.67}{\beta+1}}==\frac{2.3}{1+\frac{6.67}{\beta+1}} \tag{1}
\end{equation*}
$$

The voltage V_{E} can then be found as

$$
\begin{equation*}
V_{E}=I_{E} R_{E}=I_{E} \times 1=I_{E} \tag{2}
\end{equation*}
$$

The collector current I_{C} is obtained as

$$
\begin{equation*}
I_{C}=\alpha I_{E}=\frac{\beta}{\beta+1} I_{E} \tag{3}
\end{equation*}
$$

and the collector voltage is found as

$$
\begin{equation*}
V_{C}=V_{C C}-I_{C} R_{C}=9-2 I_{C} \tag{4}
\end{equation*}
$$

Finally, $V_{C E}$ can be calculated from

$$
\begin{equation*}
V_{C E}=V_{C}-V_{E} \tag{5}
\end{equation*}
$$

Using Eqs. (1)-(5), we can obtain the following results for the three β values specified:

Case	β	$I_{E}(\mathrm{~mA})$	$V_{E}(\mathrm{~V})$	$I_{C}(\mathrm{~mA})$	$V_{C}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$
a	∞	2.3	+2.3	2.3	+4.4	+2.1
b	100	2.16	+2.16	2.14	+4.72	+2.56
c	10	1.43	+1.43	1.30	+6.40	+4.97

Observe that in all cases $V_{C E}$ is greater than 0.3 V , confirming that the transistor is operating in the active mode, as implicitly assumed.

Figure 6.11.1
(a) $\beta=\infty$. Assume acive-mode operation for both transistors. The sequence of analysis steps is as follows:
(1) $I_{B 1}=0$
(2) $V_{B 1}=15 \times \frac{100}{100+200}=+5 \mathrm{~V}$.
(3) $V_{E 1}=V_{B 1}-V_{B E 1}=5-0.7=+4.3 \mathrm{~V}$
(4) $I_{E 1}=\frac{V_{E 1}}{10 \mathrm{k} \Omega}=\frac{4.3}{10}=0.43 \mathrm{~mA}$
(5) $I_{C 1}=\alpha_{1} I_{E 1}=1 \times 0.43=0.43 \mathrm{~mA}$
(6) $I_{B 2}=0$
(7) $I=I_{C 1}=0.43 \mathrm{~mA}$
(8) $V_{C 1}=15-0.43 \times 10=+10.7 \mathrm{~V}$
(9) $V_{E 2}=V_{C 1}+V_{E B 2}=10.7+0.7=+11.4 \mathrm{~V}$
(10) $I_{E 2}=\frac{15-V_{E 2}}{1 \mathrm{k} \Omega}=\frac{15-11.4}{1}=3.6 \mathrm{~mA}$
(11) $I_{C 2}=\alpha_{2} \times I_{E 2}=1 \times 3.6=3.6 \mathrm{~mA}$
(12) $V_{C 2}=I_{C 2} \times 1=3.6 \times 1=+3.6 \mathrm{~V}$

Check: (1) $V_{C 1}=+10.7 \mathrm{~V}$ is higher than $V_{B 1}=$ +5 V , verifying that Q_{1} is in the active mode. (2) $V_{C 2}=+3.6 \mathrm{~V}$ is lower than $V_{B 2}=V_{C 1}=$ +10.7 V , verifying that Q_{2} is in the active mode.
(b) Refer to Figure 6.11 .2 below.

Figure 6.11.2
$\beta=100$. Assume both transistors are operating in the active mode. To simplify the analysis, we replace the voltage divider that is connected to the base of Q_{1} with its Thevenin equivalent, as shown in Fig. 6.11.2, where

$$
V_{B B 1}=15 \times \frac{100}{100+200}=+5 \mathrm{~V}
$$

and

$$
R_{B B 1}=100 \mathrm{k} \Omega \| 200 \mathrm{k} \Omega=66.7 \mathrm{k} \Omega
$$

Writing a loop equation for the base-emitter circuit of Q_{1} enables us to find $I_{E 1}$ as

$$
I_{E 1}=\frac{V_{B B 1}-V_{B E 1}}{10+\frac{R_{B B 1}}{\beta_{1}+1}}=\frac{5-0.7}{10+\frac{66.7}{100+1}}=0.403 \mathrm{~mA}
$$

Continuing with the analysis:

$$
\begin{aligned}
I_{B 1} & =\frac{I_{E 1}}{\beta_{1}+1}=\frac{0.403}{101}=4 \mu \mathrm{~A} \\
V_{E 1} & =I_{E 1} \times 10=+4.03 \mathrm{~V} \\
I_{C 1} & =\alpha_{1} I_{E 1}=\frac{\beta_{1}}{\beta_{1}+1} I_{E 1}=0.99 \times 0.403 \\
& =0.4 \mathrm{~mA}
\end{aligned}
$$

The remainder of the analysis can be simplified by replacing the circuit that is connected to the base of Q_{2} by its Thevenin equivalent, as shown in Fig. 6.11.3 (refer Figure below).

Here, we have considered the collector of Q_{1} as a constant-current source $I_{C 1}$. Thus,

$$
\begin{aligned}
& V_{B B 2}=15-I_{C 1} \times 10=15-0.4 \times 10=11 \mathrm{~V} \\
& R_{B B 2}=10 \mathrm{k} \Omega
\end{aligned}
$$

Writing a loop equation for the base-emitter circuit of Q_{2}, we can obtain $I_{E 2}$ as

$$
\begin{aligned}
I_{E 2} & =\frac{15-V_{E B 2}-V_{B B 2}}{1+\frac{R_{B B 2}}{\beta_{2}+1}} \\
& =\frac{15-0.7-11}{1+\frac{10}{101}}=3 \mathrm{~mA}
\end{aligned}
$$

Continuing with the analysis:

$$
\begin{aligned}
V_{E 2} & =15-I_{E 2} \times 1=+12 \mathrm{~V} \\
V_{C 1} & =V_{E 2}-V_{E B 2}=12-0.7=+11.3 \mathrm{~V} \\
I_{B 2} & =\frac{I_{E 2}}{\beta_{2}+1}=\frac{3}{101}=0.03 \mathrm{~mA} \\
I & =I_{C 1}-I_{B 2}=0.4-0.03=0.37 \mathrm{~mA} \\
I_{C 2} & =\alpha_{2} I_{E 2}=0.99 \times 3=2.97 \mathrm{~mA} \\
V_{C 2} & =I_{C 2} \times 1=2.97 \mathrm{~V}
\end{aligned}
$$

Check: $\quad V_{C 1}(+11.3 \mathrm{~V})>V_{B 1}(+4.73 \mathrm{~V})$, thus Q_{1} is in active mode; and $V_{C 2}(+2.97 \mathrm{~V})<$ $V_{B 2}(+11.3 \mathrm{~V})$, thus Q_{2} is in active mode.

Figure 6.11.3

As a summary, Fig. 6.11.4 shows the results for the case $\beta=\infty$, and Fig. 6.11 .5 shows the results for the case $\beta=100$.

Figure 6.11.4

Figure 6.11.5
6.12

Figure 6.12.2

Figure 6.12 .2 shows the circuit with most of the analysis. Here, since V_{C} is greater than V_{B} by the voltage drop across the $100-\mathrm{k} \Omega$ resistor, the transistor will be operating in the active mode. Our analysis assumed a collector current I_{C} and determined the base current as $I_{C} / \beta=I_{C} / 50=$ $0.02 I_{C}$. The $33-\mathrm{k} \Omega$ resistor has a voltage across it equal to $V_{B E}$, that is, 0.7 V ; thus, its current is $0.7 / 3.3=0.0212 \mathrm{~mA}$. A node equation at the base yields the current through the $100-\mathrm{k} \Omega$ resistor, and a node equation at the collector provides the current through the $10-\mathrm{k} \Omega$ resistor.

Now, writing an equation for the voltage between the supply $(+10 \mathrm{~V})$ to ground, we obtain

$$
\begin{aligned}
10= & 10\left(1.02 I_{C}+0.0212\right)+100\left(0.02 I_{C}\right. \\
& +0.0212)+0.7
\end{aligned}
$$

This equation can be solved to obtain

$$
I_{C}=0.571 \mathrm{~mA}
$$

Finally, the voltage V_{C} can be found from

$$
\begin{aligned}
V_{C} & =10-\left(1.02 I_{C}+0.0212\right) \times 10 \\
& =10-10.2 \times 0.571-0.212 \\
V_{C} & =3.96 \mathrm{~V}
\end{aligned}
$$

