

UNIVERSITY OF RWANDA College of Science & Technology School of Engeering Department of Electrical & Electronics Engineering

KIZITO NKURIKIYEYEZU, PHD

EPE 2165—Analog Electronics

EXERCISE #—3: MOSFET CIRCUITS

July 26, 2022

Section 6.1: Device Structure and Physical Operation

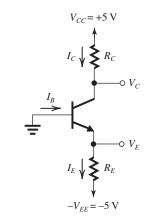
6.1

For an *npn* BJT operating in the active region, find the following:

(a) The change in the base-emitter voltage v_{BE} if the current i_C is doubled.

(b) The change in the base-emitter voltage v_{BE} if the current i_C is increased by a factor of 10.

(c) The percentage change in i_C corresponding to changes in v_{BE} of +0.5 mV, -0.5 mV, +1 mV, -1 mV, +2 mV, -2 mV, +5 mV, -5 mV, +10 mV, and -10 mV. Present the results in a table and comment.


(d) The values of α and β if at $i_C = 1$ mA the base current i_B is measured as 12.5 μ A. What is the corresponding value of emitter current?

(e) The saturation current I_S if at $i_C = 1$ mA the base-emitter voltage $v_{BE} = 675$ mV.

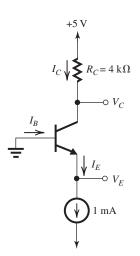
(f) The base-emitter voltage that results if two identical transistors are connected in parallel and the total collector current in the parallel combination is 1 mA.

Section 6.2: Current–Voltage Characteristics

6.2

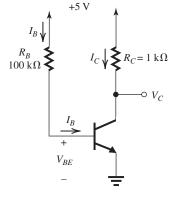
The BJT in the circuit in Fig. 6.2.1 has $\beta = 100$. Resistance R_E is $5 \text{ k}\Omega$. The voltages V_E and V_C are measured and found to be -0.68 V and +1.58 V, respectively.

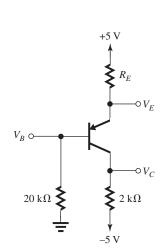
(a) In what mode is the BJT operating?


(b) Find I_E , I_B , and I_C .

(c) What must R_C be?

(d) Redesign the circuit to obtain a collector current of 2 mA and a collector voltage $V_C = +1$ V. What are the new values of R_E and R_C ?


6.3


The BJT in the circuit of Fig. 6.3.1 is specified to have $I_S = 10^{-15}$ A and β in the range 50 to 200. Find the expected range of I_E , α , I_C , V_C , I_B , V_{BE} , and V_E . Comment on the results obtained.

6.4

The transistor in the circuit in Fig. 6.4.1 is specified to have β in the range 50 to 200. Assuming that V_{BE} remains in the vicinity of 0.7 V, find the range of I_B , I_C , and V_C . Comment on the results obtained.

Figure 6.5.1

6.5

The *pnp* transistor utilized in the circuit in Fig. 6.5.1 exhibits a voltage $V_{EB} = 0.7$ V when the collector current $I_C = 1$ mA. The voltages at the base and collector are measured and found to be $V_B = +0.5$ V and $V_C = -1$ V. What must the transistor β and the resistance R_E be?

6.6

6.7

An *npn* transistor for which $V_A = 100$ V has V_{BE} adjusted to provide a collector current of 1 mA at $V_{CE} = 1$ V.

(a) What is the value of r_o at the operating point specified, that is, at $I_C = 1$ mA and $V_{CE} = 1$ V? (b) If V_{CE} is increased by 10 V, what does I_C become?

(c) If, at $V_{CE} = 1 \text{ V}$, V_{BE} is adjusted to obtain $I_C = 0.1 \text{ mA}$, what does r_o become? Now, if V_{CE} is increased by 10 V, what does I_C become?

Section 6.3: BJT Circuits at DC

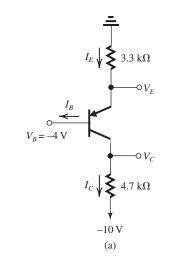
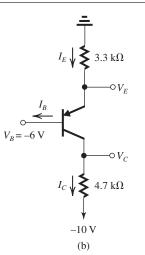
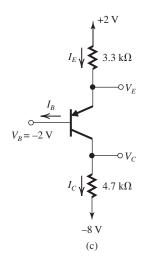




Figure 6.7.1 continues

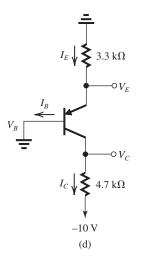
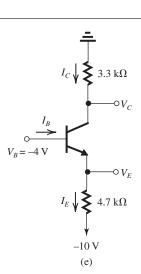
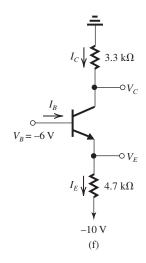
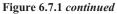
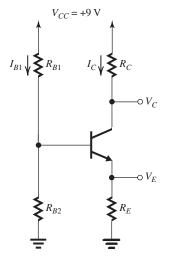





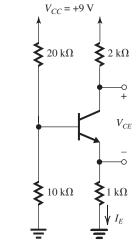
Figure 6.7.1 continued

For the circuits in Fig. 6.7.1, find node voltages, V_E and V_C , and branch currents, I_E , I_C , and I_B . Use $|V_{BE}| = 0.7$ V for a conducting transistor, and $\beta = 50$.

D6.8


For the circuits in Fig. 6.7.1(a) and (b), find emitter and collector resistors (to replace the present ones) such that $I_E = 0.5$ mA and $V_{BC} = 0$ V for $\alpha = 1$.

D6.9


6.11

Design the circuit in Fig. 6.9.1 to operate the transistor at $I_C = 1$ mA, $V_C = +5$ V, $V_E = +3$ V, and $I_{B1} = 0.1$ mA. Assume $V_{BE} = 0.7$ V and $\beta = 100$.

D6.10

Figure 6.10.1

For the circuit shown in Fig. 6.10.1, find I_E and V_{CE} for $V_{BE} = 0.7$ V and (a) $\beta = \infty$, (b) $\beta = 100$, and (c) $\beta = 10$.

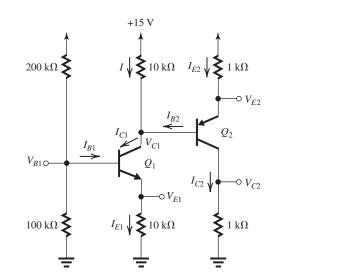
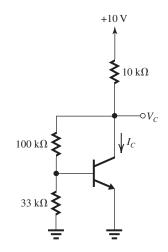



Figure 6.11.1

For the circuit shown in Fig. 6.11.1, find the values of all labeled currents and voltages for the two cases: (a) $\beta = \infty$ and (b) $\beta = 100$. Assume $V_{BE1} = V_{EB2} = 0.7$ V.

For the circuit in Fig. 6.12.1, the BJT has $V_{BE} = 0.7$ V and $\beta = 50$. Find I_C and V_C .