

UNIVERSITY OF RWANDA
College of Science er Technology School of Engeering
Department of Electrical \& Electronics Engineering

Kizito NKURIKIYEYEZU, PhD

EPE 2165-Analog Electronics

EXERCISE \#-3: MOSFET CIRCUITS

$$
\text { July } 26,2022
$$

Section 6.1: Device Structure and Physical Operation

6.1

For an $n p n$ BJT operating in the active region, find the following:
(a) The change in the base-emitter voltage $v_{B E}$ if the current i_{C} is doubled.
(b) The change in the base-emitter voltage $v_{B E}$ if the current i_{C} is increased by a factor of 10 .
(c) The percentage change in i_{C} corresponding to changes in $v_{B E}$ of $+0.5 \mathrm{mV},-0.5 \mathrm{mV},+1 \mathrm{mV}$, $-1 \mathrm{mV},+2 \mathrm{mV},-2 \mathrm{mV},+5 \mathrm{mV},-5 \mathrm{mV},+10 \mathrm{mV}$, and -10 mV . Present the results in a table and comment.
(d) The values of α and β if at $i_{C}=1 \mathrm{~mA}$ the base current i_{B} is measured as $12.5 \mu \mathrm{~A}$. What is the corresponding value of emitter current?
(e) The saturation current I_{S} if at $i_{C}=1 \mathrm{~mA}$ the base-emitter voltage $v_{B E}=675 \mathrm{mV}$.
(f) The base-emitter voltage that results if two identical transistors are connected in parallel and the total collector current in the parallel combination is 1 mA .

Section 6.2: Current-Voltage Characteristics

6.2

Figure 6.2.1

The BJT in the circuit in Fig. 6.2 .1 has $\beta=100$. Resistance R_{E} is $5 \mathrm{k} \Omega$. The voltages V_{E} and V_{C} are measured and found to be -0.68 V and +1.58 V , respectively.
(a) In what mode is the BJT operating?
(b) Find I_{E}, I_{B}, and I_{C}.
(c) What must R_{C} be?
(d) Redesign the circuit to obtain a collector current of 2 mA and a collector voltage $V_{C}=+1 \mathrm{~V}$. What are the new values of R_{E} and R_{C} ?

6.3

Figure 6.3.1

The BJT in the circuit of Fig. 6.3.1 is specified to have $I_{S}=10^{-15} \mathrm{~A}$ and β in the range 50 to 200 . Find the expected range of $I_{E}, \alpha, I_{C}, V_{C}, I_{B}, V_{B E}$, and V_{E}. Comment on the results obtained.

6.4

Figure 6.4.1

The transistor in the circuit in Fig. 6.4.1 is specified to have β in the range 50 to 200. Assuming that $V_{B E}$ remains in the vicinity of 0.7 V , find the range of I_{B}, I_{C}, and V_{C}. Comment on the results obtained.
6.5

Figure 6.5.1
The pnp transistor utilized in the circuit in Fig. 6.5.1 exhibits a voltage $V_{E B}=0.7 \mathrm{~V}$ when the collector current $I_{C}=1 \mathrm{~mA}$. The voltages at the base and collector are measured and found to be $V_{B}=+0.5 \mathrm{~V}$ and $V_{C}=-1 \mathrm{~V}$. What must the transistor β and the resistance R_{E} be?
6.6

An $n p n$ transistor for which $V_{A}=100 \mathrm{~V}$ has $V_{B E}$ adjusted to provide a collector current of 1 mA at $V_{C E}=1 \mathrm{~V}$.
(a) What is the value of r_{o} at the operating point specified, that is, at $I_{C}=1 \mathrm{~mA}$ and $V_{C E}=1 \mathrm{~V}$?
(b) If $V_{C E}$ is increased by 10 V , what does I_{C} become?
(c) If, at $V_{C E}=1 \mathrm{~V}, V_{B E}$ is adjusted to obtain $I_{C}=0.1 \mathrm{~mA}$, what does r_{o} become? Now, if $V_{C E}$ is increased by 10 V , what does I_{C} become?

Section 6.3: BJT Circuits at DC

6.7

(a)

Figure 6.7.1 continues

Figure 6.7.1 continued

(d)

For the circuits in Fig. 6.7.1, find node voltages, V_{E} and V_{C}, and branch currents, I_{E}, I_{C}, and I_{B}. Use $\left|V_{B E}\right|=0.7 \mathrm{~V}$ for a conducting transistor, and $\beta=50$.

D6. 8

For the circuits in Fig. 6.7.1(a) and (b), find emitter and collector resistors (to replace the present ones) such that $I_{E}=0.5 \mathrm{~mA}$ and $V_{B C}=0 \mathrm{~V}$ for $\alpha=1$.

Figure 6.7.1 continued

D6.9

Figure 6.9.1

Design the circuit in Fig. 6.9.1 to operate the transistor at $I_{C}=1 \mathrm{~mA}, V_{C}=+5 \mathrm{~V}, V_{E}=+3 \mathrm{~V}$, and $I_{B 1}=0.1 \mathrm{~mA}$. Assume $V_{B E}=0.7 \mathrm{~V}$ and $\beta=100$.

D6.10

Figure 6.10.1

For the circuit shown in Fig. 6.10.1, find I_{E} and $V_{C E}$ for $V_{B E}=0.7 \mathrm{~V}$ and (a) $\beta=\infty$, (b) $\beta=100$, and (c) $\beta=10$.

6.11

Figure 6.11.1

For the circuit shown in Fig. 6.11.1, find the values of all labeled currents and voltages for the two cases: (a) $\beta=\infty$ and (b) $\beta=100$. Assume $V_{B E 1}=V_{E B 2}=0.7 \mathrm{~V}$.
6.12

Figure 6.12.1

For the circuit in Fig. 6.12.1, the BJT has $V_{B E}=$ 0.7 V and $\beta=50$. Find I_{C} and V_{C}.

