

UNIVERSITY OF RWANDA College of Science & Technology School of Engeering

Department of Electrical & Electronics Engineering

Dr. Kizito NKURIKIYEYEZU

EPE 2165—Analog Electronics

HOMEWORK #1—Signals and amplifiers

Question:	1	2	3	4	5	6	Total
Points:	10	10	20	20	15	25	100
Score:							

Issued on:

May 18, 2022

Due on:

May 26, 2022

UNIVERSITY OF RWANDA

- 1. Ohm's law relates V, I, and R for a resistor. For each of the situations following, find the missing item:
 - (a) (2½ points) $R = 1 \,\mathrm{k}\Omega, V = 5 \,\mathrm{V}$
 - (b) (2½ points) $V = 5 \,\mathrm{V}, I = 1 \,\mathrm{mA}$
 - (c) $(2\frac{1}{2} \text{ points})$ $R = 10 \text{ k}\Omega, I = 0.1 \text{ mA}$
 - (d) (2½ points) $R = 100 \,\Omega, V = 1 \,\mathrm{V}$
- 2. FIG 1 (a) shows a two-resistor voltage divider. Its function is to generate a voltage V_o (smaller than the power-supply voltage V_{DD}) at its output node X. The circuit looking back at node X is equivalent to that shown in FIG 1 (b). Observe that this is the Thevenin equivalent of the voltage-divider circuit.

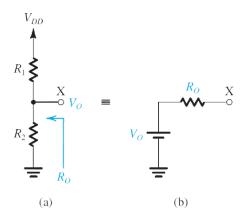


FIGURE 1. Two-resistor voltage divider.

- (a) (5 points) Find expressions for V_o for $V_{DD} = 5V$, $R_1 = R_2 = 1k$
- (b) (5 points) Find expressions for Ro for $V_{DD} = 5V$, $R_1 = R_2 = 1k$
- 3. (20 points) An amplifier has the following RMS¹ characteristics: $v_I = 100 mv$, $i_I = 100 \mu A$, $v_o = 10V$, $R_L = 100\Omega$. Find its the voltage, current, and power gains (A_v, A_i, A_i, A_i) , respectively) both as ratios and in dB
- 4. Suppose you are part of team that needs to design a voltage amplifier which will be driven from a signal source v_s with an amplitude of $v_s=5mV$ peak amplitude and a source resistance of $R_s=10k\Omega$. Assuming that the amplifer must supply a peak output of $v_o=2V$ across a $R_L=1k\Omega$ load \cdots
 - (a) (5 points) What is the required voltage gain from the source to the load?
 - (b) (5 points) If the peak current available from the source is $0.1\mu A$, what is the smallest input resistance allowed?

¹ Remember the root-mean-square (RMS) value of a voltage V_a is equal to $V_{RMS}=\frac{V_a}{\sqrt{2}}$

UNIVERSITY OF RWANDA

- (c) (5 points) For the design with the value of R_i obtained in question (b) above, find the overall current gain and power gain.
- (d) (5 points) If the amplifier power supply limits the peak value of the output open-circuit voltage to 3 V, what is the largest output resistance allowed?
- 5. A spectrum analyzer is used to measure a square a square-wave signal. The spectrum analyzer is a frequency-selective voltmeter and show its spectrum to contain adjacent components (spectrallines) at 98 kHz and 126 kHz of amplitudes 63 mV and 49 mV, respectively.
 - (a) (5 points) For this signal, what would direct measurement of the fundamental show its frequency and amplitude to be?
 - (b) (5 points) What is the RMS value of the fundamental?
 - (c) (5 points) What are the peak-to-peak amplitude and period of the originating square wave?
- 6. An amplifier operating from $\pm 3V$ supplies provides a 2.2V peak sine wave across a $100\,\Omega$ load when provided with a $0.2\,\mathrm{V}$ peak input from which 1.0mA peak is drawn. The average current in each supply is measured to be $20\,\mathrm{mA}$.
 - (a) (5 points) Find the voltage gain of the amplifier
 - (b) (5 points) Find the current gain of the amplifier
 - (c) (5 points) Find the power gain of the amplifier and express it in decibels
 - (d) (10 points) Find the supply power, amplifier dissipation, and amplifier efficiency.