

UNIVERSITY OF RWANDA College of Science & Technology School of Engeering

Department of Electrical & Electronics Engineering

Dr. Kizito NKURIKIYEYEZU

EPE 2165—Analog Electronics

HOMEWORK #3-MOSFETs

Question:	1	2	3	4	5	6	Total
Points:	20	10	20	10	20	20	100
Score:							

Issued on:

June 29, 2022

Due on:

July 7, 2022

UNIVERSITY OF RWANDA

- 1. An NMOS transistor that is operated with a small v_{DS} is found to exhibit a resistance r_{DS} . By what factor will r_{DS} change in each of the following situations?
 - (a) (5 points) v_{OV} is doubled.
 - (b) (5 points) The device is replaced with another fabricated in the same technology but with double the width.
 - (c) (5 points) The device is replaced with another fabricated in the same technology but with both the width and length doubled.
 - (d) (5 points) The device is replaced with another fabricated in a more advanced technology for which the oxide thickness is halved and similarly for W and L (assume n remains unchanged)."
- 2. (10 points) For a particular IC-fabrication process, the transconductance parameter $k'=400\,\mu\text{A}\,\text{V}^{-2}$ and $V_t=0.5V$. In an application in which $v_{GS}=v_{DS}=V_{supply}=1.8V$, a drain current of 2 mA is required of a device of minimum length of 0.18 0.18 μ m. What value of channel width must the design use?
- 3. (a) (10 points) For the circuit shown in Figure 1a, assuming that $\lambda = 0$, show that

$$V = V_t + \sqrt{\frac{2I}{k_n'W/L}} \tag{1}$$

- (b) (10 points) The MOSFETs Figure 1b have $V_t=0.4V$, $k_n'=0.4mA/V^2$ and $\lambda=0$. Find ration W/L of each transistors $(Q_1,Q_2 \text{ and } Q_3)$ that are required to obtain the reference voltages $(V_1=+0.6V,V_2=+1.3V \text{ and } V_3=2.1V)$ shown on the circuit.
- 4. (10 points) Figure 2a has a drain current of 0.1 mA and a drain voltage of $V_D=0.2V$. The MOSFET has Vt=0.2V, $\mu_n C_{ox}=400\,\mu\text{A}\,\text{V}^{-2}$, $L=0.5\,\mu\text{m}$, and $W=4\,\mu\text{m}$. What is the the required values for R_S and R_D ? Assume $\zeta=0$

UNIVERSITY OF RWANDA

5. The MOSFET in the circuit of Figure 2b has $V_t = 1V$ and $k_n = 2mA/V^2$, and the Early effect can be neglected.

- (a) (10 points) Find the values of R_S and R_D that result in the MOSFET operating with an overdrive voltage of 0.5V and a drain voltage of 1.5V. What is the resulting I_D value?
- (b) (5 points) If R_L is reduced from $15 \,\mathrm{k}\Omega$, what does V_D become?
- (c) If R_L is disconnected, what does V_D become?
- (d) (5 points) With R_L disconnected, what is the largest RD that can be used while the MOSFET is remaining in saturation?
- 6. The transistors in the circuit of Figure 3 have $k_n = k_p = 2mA/V^2$ and $V_{tn} = -Vtp = 0.4V$. Find v_O for each of the following cases:
 - (a) (5 points) $v_I = 0V$
 - (b) (5 points) $v_I = 1V$
 - (c) (5 points) $v_I = -1V$
 - (d) (5 points) $v_I = -2V$

FIGURE 3