
APPENDIX H

DESIGN OF STAGGER-TUNED AMPLIFIERS

As mentioned in Section 17.11.7, a much better overall response of a tuned amplifier is
obtained by stagger-tuning (as opposed to synchronous tuning) the individual stages, as
illustrated in Fig. 17.46which is repeated here as Fig.H.1. Stagger-tuned amplifiers are usually
designed so that the overall response exhibits maximal flatness around the center-frequency
f0. Such a response can be obtained by transforming the response of a maximally flat
(Butterworth) low-pass filter up the frequency axis to ω0. We show here how this can be
done.

The transfer function of a second-order bandpass filter can be expressed in terms of its
poles as
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For a narrow-band filter, Q � 1, and for values of s in the neighborhood of +jω0 (see
Fig. H.2b), the second factor in the denominator is approximately (s+ jω0 � 2s). Hence
Eq. (H.1) can be approximated in the neighborhood of jω0 by

T(s) � a1/2

s+ω0/2Q− jω0

= a1/2

(s− jω0)+ω0/2Q
(H.2)

This is known as the narrow-band approximation.1 Note that the magnitude response, for
s= jω, has a peak value of a1Q/ω0 at ω = ω0, as expected.

Now consider a first-order low-pass network with a single pole at p= −ω0/2Q (we use p
to denote the complex frequency variable for the low-pass filter). Its transfer function is

T(p) = K

p+ω0/2Q
(H.3)

where K is a constant. Comparing Eqs. (H.2) and (H.3) we note that they are identical for
p= s− jω0 or, equivalently,

s= p+ jω0 (H.4)

1The bandpass response is geometrically symmetrical around the center frequency ω0. That is, each pair
of frequencies ω1 and ω2 at which the magnitude response is equal are related by ω1ω2 = ω

2
0. For high

Q, the symmetry becomes almost arithmetic for frequencies close to ω0. That is, two frequencies with
the same magnitude response are almost equally spaced from ω0. The same is true for higher-order
bandpass filters designed using the transformation presented in this section.
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H-2 Appendix H Design of Stagger-Tuned Amplifiers

Figure H.1 Stagger-tuning the individual resonant circuits can result in an overall response with a passband
flatter than that obtained with synchronous tuning (Fig. 17.48).

This result implies that the response of the second-order bandpass filter in the neighborhood
of its center frequency s = jω0 is identical to the response of a first-order low-pass filter
with a pole at (−ω0/2Q) in the neighborhood of p = 0. Thus the bandpass response can be
obtained by shifting the pole of the low-pass prototype and adding the complex-conjugate
pole, as illustrated in Fig. H.2(b). This is called a lowpass-to-bandpass transformation for
narrow-band filters.

The transformation p = s − jω0 can be applied to low-pass filters of order greater
than one. For instance, we can transform a maximally flat, second-order low-pass filter
(Q = 1/

√
2) to obtain a maximally flat bandpass filter. If the 3-dB bandwidth of the

bandpass filter is to be B rad/s, then the low-pass filter should have a 3-dB frequency (and
thus a pole frequency) of (B/2) rad/s, as illustrated in Fig. H.3. The resulting fourth-order
bandpass filter will be a stagger-tuned one, with its two tuned circuits (refer to Fig. 16.48)
having

ω01 = ω0 + B
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B
(H.5)

ω02 = ω0 − B
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2
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(H.6)

Note that for the overall response to have a normalized center-frequency gain of unity,
the individual responses have to have equal center-frequency gains of

√
2, as shown in

Fig. H.3(d).
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Figure H.2 Obtaining a second-order narrow-band bandpass filter by transforming a first-order low-pass
filter. (a) Pole of the first-order filter in the p plane. (b) Applying the transformation s= p+ jω0 and adding
a complex-conjugate pole results in the poles of the second-order bandpass filter. (c) Magnitude response of
the first-order low-pass filter. (d)Magnitude response of the second-order bandpass filter.

©2015 Oxford University Press
Reprinting or distribution, electronically or otherwise, without the express written consent of Oxford University Press is prohibited.



H-4 Appendix H Design of Stagger-Tuned Amplifiers

Im(p)

Re(p)

Low-pass filter

0

s � p � j�0

B
2

45�

p plane

(a)

0 �

j�

B

245�

45� B

2

�j�0
B

245�

45� B

2

j� �
B

2��2

j� �

2��2
B

�0 �

2��2
B

�0 �

�j�0

s plane

Bandpass filter

(b)

s � p � j�0

2

(c)

B0 Im(p)

�T �

0.707

1.000

B

0.707

1.000

� 0B

2��2
� 0 � �0 �

B

Individual
responses

Overall
response

2��2

1.414

�

(d)

Figure H.3 Obtaining the poles and the frequency response of a fourth-order stagger-tuned, narrow-band
bandpass amplifier by transforming a second-order low-pass, maximally flat response.
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Problems H-5

EXERCISES

D H.1 A stagger-tuned design for the IF amplifier specified in Exercise 17.36 is required. Find f01, B1, f02, and
B2. Also give the value of C and R for each of the two stages. (Recall that 3-μH inductors are to be
used.)
Ans. 10.77 MHz; 141.4 kHz; 10.63 MHz; 141.4 kHz; 72.8 pF; 15.5 k�; 74.7 pF; 15.1 k�

H.2 Using the fact that the voltage gain at resonance is proportional to the value of R, find the
ratio of the gain at 10.7 MHz of the stagger-tuned amplifier designed in Exercise H.1 and the
synchronously tuned amplifier designed in Exercise 17.36. (Hint: For the stagger-tuned amplifier,
note that the gain at ω0 is equal to the product of the gains of the individual stages at their 3-dB
frequencies.)
Ans. 2.42

PROBLEMS

*H.1 This problem investigates the selectivity of maximally
flat stagger-tuned amplifiers derived in the manner illustrated
in Fig. H.3.

(a) The low-pass maximally flat (Butterworth) filter having
a 3-dB bandwidth B/2 and order N has the magnitude
response

|T | = 1

/√
1+

(
�

B/2

)2N

where�= Im(p) is the frequency in the low-pass domain.
(This relationship can be obtained using the information
provided in Section 17.3 on Butterworth filters.) Use this
expression to obtain for the corresponding bandpass filter

at ω = ω0 + δω, where δω � ω0, the relationship

|T | = 1

/√
1+

(
δω

B/2

)2N

(b) Use the transfer function in (a) to find the attenuation (in
decibels) obtained at a bandwidth of 2B for N = 1 to 5.
Also find the ratio of the 30-dB bandwidth to the 3-dB
bandwidth for N = 1 to 5.

**H.2 Consider a sixth-order, stagger-tuned bandpass ampli-
fier with center frequency ω0 and 3-dB bandwidth B. The
poles are to be obtained by shifting those of the third-order
maximally flat low-pass filter, given in Fig. 17.10(c). For each
of the three resonant circuits, find ω0, the 3-dB bandwidth,
and Q.
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